Mark Nüesch, Miloš T Ivanović, Daniel Nettels, Robert B Best, Benjamin Schuler
{"title":"Accuracy of distance distributions and dynamics from single-molecule FRET.","authors":"Mark Nüesch, Miloš T Ivanović, Daniel Nettels, Robert B Best, Benjamin Schuler","doi":"10.1016/j.bpj.2025.03.028","DOIUrl":null,"url":null,"abstract":"<p><p>Single-molecule spectroscopy combined with Förster resonance energy transfer (FRET) is widely used to quantify distance dynamics and distributions in biomolecules. Most commonly, measurements are interpreted using simple analytical relations between experimental observables and the underlying distance distributions. However, these relations make simplifying assumptions, such as a separation of timescales between inter-dye distance dynamics, fluorescence lifetimes, and dye reorientation, the validity of which is notoriously difficult to assess from experimental data alone. Here, we use experimentally validated long-timescale, all-atom explicit-solvent molecular dynamics simulations of a disordered peptide with explicit fluorophores for testing these assumptions, in particular the separation of the relevant timescales and the description of chain dynamics in terms of diffusion in a potential of mean force. Our results allow us to quantitatively assess the resulting errors; they indicate that even outside the simple limiting regimes, the errors from common approximations in data analysis are generally smaller than the systematic uncertainty limiting the accuracy of FRET efficiencies. We also illustrate how the direct comparison between measured and simulated experimental data can be employed to optimize force field parameters and develop increasingly realistic simulation models.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-molecule spectroscopy combined with Förster resonance energy transfer (FRET) is widely used to quantify distance dynamics and distributions in biomolecules. Most commonly, measurements are interpreted using simple analytical relations between experimental observables and the underlying distance distributions. However, these relations make simplifying assumptions, such as a separation of timescales between inter-dye distance dynamics, fluorescence lifetimes, and dye reorientation, the validity of which is notoriously difficult to assess from experimental data alone. Here, we use experimentally validated long-timescale, all-atom explicit-solvent molecular dynamics simulations of a disordered peptide with explicit fluorophores for testing these assumptions, in particular the separation of the relevant timescales and the description of chain dynamics in terms of diffusion in a potential of mean force. Our results allow us to quantitatively assess the resulting errors; they indicate that even outside the simple limiting regimes, the errors from common approximations in data analysis are generally smaller than the systematic uncertainty limiting the accuracy of FRET efficiencies. We also illustrate how the direct comparison between measured and simulated experimental data can be employed to optimize force field parameters and develop increasingly realistic simulation models.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.