{"title":"Upcycling Polyoxymethylene via H2O2-mediated Selective Oxidation.","authors":"Mugeng Chen, Kaizhi Wang, Zehui Sun, Wendi Guo, Chen Chen, Jiachen Fei, Ting Yang, Heyong He, Yongmei Liu, Yong Cao","doi":"10.1002/cssc.202500179","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing challenge of plastic pollution, coupled with the depletion of fossil resources, necessitates innovative solutions for the sustainable management of end-of-life plastics. This issue is particularly pressing for polyoxymethylene (POM), a widely used engineering thermoplastic known for its exceptional mechanical properties and durability, which degrades slowly and releases harmful formaldehyde (HCHO). In this study, we present a straightforward method to convert POM waste into formic acid (FA) using hydrogen peroxide (H2O2) as the oxidant. While H2O2 is recognized as a selective and mild oxidation agent, its potential for upcycling plastics into valuable chemicals has been largely uncharted. Our approach utilizes microporous aluminosilicate zeolite H-Beta, known for its Brønsted acidity, to effectively catalyze both the depolymerization of POM into HCHO and its subsequent oxidation to FA. A significant aspect of this method is the incorporation of 1,1,1,3,3,3-hexafluoroisopropanol, which enhances depolymerization through strong hydrogen bonding interactions. This catalytic system efficiently transforms a variety of post-consumer POM waste into FA while also facilitating the Baeyer-Villiger-type oxidation of various carbonyl compounds, achieving high yields in both processes. Overall, these findings advance the conversion of plastic waste into value-added chemicals via H2O2-mediated reactions, enhancing sustainable waste management and supporting circular economy principles.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500179"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500179","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing challenge of plastic pollution, coupled with the depletion of fossil resources, necessitates innovative solutions for the sustainable management of end-of-life plastics. This issue is particularly pressing for polyoxymethylene (POM), a widely used engineering thermoplastic known for its exceptional mechanical properties and durability, which degrades slowly and releases harmful formaldehyde (HCHO). In this study, we present a straightforward method to convert POM waste into formic acid (FA) using hydrogen peroxide (H2O2) as the oxidant. While H2O2 is recognized as a selective and mild oxidation agent, its potential for upcycling plastics into valuable chemicals has been largely uncharted. Our approach utilizes microporous aluminosilicate zeolite H-Beta, known for its Brønsted acidity, to effectively catalyze both the depolymerization of POM into HCHO and its subsequent oxidation to FA. A significant aspect of this method is the incorporation of 1,1,1,3,3,3-hexafluoroisopropanol, which enhances depolymerization through strong hydrogen bonding interactions. This catalytic system efficiently transforms a variety of post-consumer POM waste into FA while also facilitating the Baeyer-Villiger-type oxidation of various carbonyl compounds, achieving high yields in both processes. Overall, these findings advance the conversion of plastic waste into value-added chemicals via H2O2-mediated reactions, enhancing sustainable waste management and supporting circular economy principles.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology