RNA Binding Protein IGF2BP3 Rehabilitates Glycolysis of Vascular Endothelial Cells to Protect the ox-LDL-induced Cellular Injury via Stabilizing LDHA mRNA.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xing-Chun Mo, Ping Lu, Qu-Cheng Wei, Xiao-Jing Yang
{"title":"RNA Binding Protein IGF2BP3 Rehabilitates Glycolysis of Vascular Endothelial Cells to Protect the ox-LDL-induced Cellular Injury via Stabilizing LDHA mRNA.","authors":"Xing-Chun Mo, Ping Lu, Qu-Cheng Wei, Xiao-Jing Yang","doi":"10.1007/s12013-025-01735-0","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular endothelial cells (VECs) dysfunction has been revealed to be a major cause of various cardiovascular diseases. Yet, the precise cellular and molecular mechanisms of VECs injury remain elusive. This study aims to investigate the roles and molecular mechanisms of RNA binding protein IGF2BP3 in vascular endothelial cell injury caused by oxidized low-density lipoprotein (ox-LDL). HUVECs were treated with ox-LDL to induce endothelial cell injury, and the cellular responses to ox-LDL were assessed using cell viability and apoptosis assays. IGF2BP3 was expressed at low levels in vascular tissues from atherosclerosis patients. Treatment with ox-LDL significantly decreased the expression of IGF2BP3 in HUVECs. Overexpression of IGF2BP3 effectively reduced the injury induced by ox-LDL. Glucose metabolism enzymes were significantly downregulated in vascular tissues from atherosclerosis patients and in HUVECs treated with ox-LDL, leading to suppressed glucose metabolism. IGF2BP3 upregulated the glucose metabolism enzyme LDHA to alleviate the injury caused by ox-LDL in HUVECs. Analysis of the LDHA sequence revealed the presence of an IGF2BP3 binding motif in its 3'UTR. Further experiments including RNA pull-down, RNA IP, and RNA stability assays confirmed the specific binding of IGF2BP3 to the 3'UTR region of LDHA, stabilizing its transcripts. Rescue experiments demonstrated that IGF2BP3 mitigated vascular endothelial cell injury by regulating LDHA-mediated glucose metabolism. The outcomes of this study elucidate the protective roles of IGF2BP3 in safeguarding vascular endothelial cells against injury.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01735-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular endothelial cells (VECs) dysfunction has been revealed to be a major cause of various cardiovascular diseases. Yet, the precise cellular and molecular mechanisms of VECs injury remain elusive. This study aims to investigate the roles and molecular mechanisms of RNA binding protein IGF2BP3 in vascular endothelial cell injury caused by oxidized low-density lipoprotein (ox-LDL). HUVECs were treated with ox-LDL to induce endothelial cell injury, and the cellular responses to ox-LDL were assessed using cell viability and apoptosis assays. IGF2BP3 was expressed at low levels in vascular tissues from atherosclerosis patients. Treatment with ox-LDL significantly decreased the expression of IGF2BP3 in HUVECs. Overexpression of IGF2BP3 effectively reduced the injury induced by ox-LDL. Glucose metabolism enzymes were significantly downregulated in vascular tissues from atherosclerosis patients and in HUVECs treated with ox-LDL, leading to suppressed glucose metabolism. IGF2BP3 upregulated the glucose metabolism enzyme LDHA to alleviate the injury caused by ox-LDL in HUVECs. Analysis of the LDHA sequence revealed the presence of an IGF2BP3 binding motif in its 3'UTR. Further experiments including RNA pull-down, RNA IP, and RNA stability assays confirmed the specific binding of IGF2BP3 to the 3'UTR region of LDHA, stabilizing its transcripts. Rescue experiments demonstrated that IGF2BP3 mitigated vascular endothelial cell injury by regulating LDHA-mediated glucose metabolism. The outcomes of this study elucidate the protective roles of IGF2BP3 in safeguarding vascular endothelial cells against injury.

RNA结合蛋白IGF2BP3通过稳定LDHA mRNA恢复血管内皮细胞糖酵解,保护ox- ldl诱导的细胞损伤。
血管内皮细胞(VECs)功能障碍已被揭示为多种心血管疾病的主要原因。然而,VECs损伤的确切细胞和分子机制仍不清楚。本研究旨在探讨RNA结合蛋白IGF2BP3在氧化性低密度脂蛋白(ox-LDL)致血管内皮细胞损伤中的作用及分子机制。用ox-LDL处理HUVECs诱导内皮细胞损伤,并通过细胞活力和凋亡测定来评估细胞对ox-LDL的反应。IGF2BP3在动脉粥样硬化患者血管组织中低水平表达。ox-LDL治疗可显著降低huvec中IGF2BP3的表达。IGF2BP3过表达可有效减轻ox-LDL所致的损伤。在动脉粥样硬化患者的血管组织和ox-LDL处理的HUVECs中,糖代谢酶显著下调,导致糖代谢受到抑制。IGF2BP3上调葡萄糖代谢酶LDHA,减轻ox-LDL对HUVECs的损伤。LDHA序列分析显示其3'UTR中存在IGF2BP3结合基序。进一步的实验包括RNA下拉、RNA IP和RNA稳定性分析,证实了IGF2BP3与LDHA 3'UTR区域的特异性结合,稳定了其转录本。救援实验表明IGF2BP3通过调节ldha介导的葡萄糖代谢来减轻血管内皮细胞损伤。本研究结果阐明了IGF2BP3在保护血管内皮细胞免受损伤中的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信