{"title":"USP14-Dependent IGF1R Aggravates High Glucose-Induced Diabetic Retinopathy by Upregulating BAP1.","authors":"Li Yu, Xia Zheng, Yan Wu, Kui Ge","doi":"10.1007/s12010-025-05215-2","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a microvascular complication of diabetes. Insulin-like growth factor 1 receptor (IGF1R) has been implicated in the pathogenesis of DR; however, the underlying mechanism remains unclear. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess IGF1R mRNA expression. Western blotting assays were performed to analyze the protein expression of IGF1R, ubiquitin-specific peptidase 14 (USP14), and BRCA1-associated protein 1 (BAP1). Cell viability, apoptosis, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels were analyzed using cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Fluorescent microscopy and flow cytometry were performed for reactive oxygen species (ROS) level assessment, and colorimetric assays for iron (Fe<sup>2+</sup>) and glutathione (GSH) levels. Co-immunoprecipitation assays and/or colocalization techniques were employed to validate the association of IGF1R with USP14 and BAP1. Treatment with high glucose (HG) increased the protein expression of IGF1R, USP14, and BAP1 in ARPE-19 cells. Silencing of IGF1R mitigated HG-induced apoptosis, inflammatory response, and ferroptosis in ARPE-19 cells. USP14 was found to stabilize IGF1R protein expression through deubiquitination. Overexpression of USP14 exacerbated HG-induced cellular injury, whereas silencing of USP14 protected ARPE-19 cells by reducing IGF1R expression. Interaction between IGF1R and BAP1 was confirmed in ARPE-19 cells and IGF1R silencing protected cells from HG-induced injury by regulating BAP1 expression. Thus, USP14-dependent regulation of IGF1R expression and its interaction with BAP1 play a crucial role in the pathogenesis of high glucose-induced diabetic retinopathy.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05215-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Insulin-like growth factor 1 receptor (IGF1R) has been implicated in the pathogenesis of DR; however, the underlying mechanism remains unclear. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess IGF1R mRNA expression. Western blotting assays were performed to analyze the protein expression of IGF1R, ubiquitin-specific peptidase 14 (USP14), and BRCA1-associated protein 1 (BAP1). Cell viability, apoptosis, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels were analyzed using cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Fluorescent microscopy and flow cytometry were performed for reactive oxygen species (ROS) level assessment, and colorimetric assays for iron (Fe2+) and glutathione (GSH) levels. Co-immunoprecipitation assays and/or colocalization techniques were employed to validate the association of IGF1R with USP14 and BAP1. Treatment with high glucose (HG) increased the protein expression of IGF1R, USP14, and BAP1 in ARPE-19 cells. Silencing of IGF1R mitigated HG-induced apoptosis, inflammatory response, and ferroptosis in ARPE-19 cells. USP14 was found to stabilize IGF1R protein expression through deubiquitination. Overexpression of USP14 exacerbated HG-induced cellular injury, whereas silencing of USP14 protected ARPE-19 cells by reducing IGF1R expression. Interaction between IGF1R and BAP1 was confirmed in ARPE-19 cells and IGF1R silencing protected cells from HG-induced injury by regulating BAP1 expression. Thus, USP14-dependent regulation of IGF1R expression and its interaction with BAP1 play a crucial role in the pathogenesis of high glucose-induced diabetic retinopathy.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.