Lipase Activation by Poly(Methyl Methacrylate) in Dispersed Solution: Mechanistic Insights by Fluorescence Spectroscopy.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
André Merz, Jonas Thelen, Jürgen Linders, Christian Mayer, Kerstin Hoffmann-Jacobsen
{"title":"Lipase Activation by Poly(Methyl Methacrylate) in Dispersed Solution: Mechanistic Insights by Fluorescence Spectroscopy.","authors":"André Merz, Jonas Thelen, Jürgen Linders, Christian Mayer, Kerstin Hoffmann-Jacobsen","doi":"10.1007/s12010-025-05217-0","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the mechanisms of polymer-lipase interactions that govern the catalytic activity of lipases in the presence of polymers. Using a combination of fluorescence correlation spectroscopy (FCS), activity analysis, fluorescence spectroscopy, and computational surface analysis, three model lipases-Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CalB), and Bacillus subtilis lipase A (BSLA), with different degrees of hydrophobic active site exposure were studied. Low-molecular-weight poly(methyl methacrylate) (PMMA), synthesized via ARGET ATRP, was employed to study the effect of unstructured polymers in dispersed solution on lipase activity. PMMA significantly enhanced TLL and BSLA hydrolytic activity, while no CalB activation was observed. FCS analysis indicated that this activation was facilitated by polymer lipase binding, a phenomenon observed with TLL and BSLA but not with CalB. Computational analysis further revealed that the surface properties of the lipases were critical for the lipases' susceptibility to activation by PMMA. Although CalB exhibited the largest total hydrophobic surface area, its homogeneous distribution prevented activation, whereas strong, localized hydrophobic interactions allowed PMMA to bind and activate TLL and BSLA. Supported by the quantitative correlation between elevated 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence in the presence of PMMA and lipase activity, the activation was attributed to locally increased hydrophobicity of the lipases upon polymer binding. These findings provide critical insights into the role of polymer interactions in lipase activation and stabilization, highlighting the potential for designing tailored polymer carriers to optimize enzyme performance in industrial and biotechnological applications.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05217-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the mechanisms of polymer-lipase interactions that govern the catalytic activity of lipases in the presence of polymers. Using a combination of fluorescence correlation spectroscopy (FCS), activity analysis, fluorescence spectroscopy, and computational surface analysis, three model lipases-Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CalB), and Bacillus subtilis lipase A (BSLA), with different degrees of hydrophobic active site exposure were studied. Low-molecular-weight poly(methyl methacrylate) (PMMA), synthesized via ARGET ATRP, was employed to study the effect of unstructured polymers in dispersed solution on lipase activity. PMMA significantly enhanced TLL and BSLA hydrolytic activity, while no CalB activation was observed. FCS analysis indicated that this activation was facilitated by polymer lipase binding, a phenomenon observed with TLL and BSLA but not with CalB. Computational analysis further revealed that the surface properties of the lipases were critical for the lipases' susceptibility to activation by PMMA. Although CalB exhibited the largest total hydrophobic surface area, its homogeneous distribution prevented activation, whereas strong, localized hydrophobic interactions allowed PMMA to bind and activate TLL and BSLA. Supported by the quantitative correlation between elevated 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence in the presence of PMMA and lipase activity, the activation was attributed to locally increased hydrophobicity of the lipases upon polymer binding. These findings provide critical insights into the role of polymer interactions in lipase activation and stabilization, highlighting the potential for designing tailored polymer carriers to optimize enzyme performance in industrial and biotechnological applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信