{"title":"Synergistic effects of air pollution and cold spells on ischemic heart disease hospitalization risk: a case-crossover study in Xinxiang, China.","authors":"Desong Wen, Yongbin Wang, Hui Zhang, Hong Qi, Huan Li, Yingen Chen, Weimin Wang, Fei Lin, Guoan Zhao","doi":"10.1007/s00484-025-02899-3","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution and extreme weather events pose a serious threat to human health. We collected atmospheric pollution, meteorological factors, and hospitalisation data for ischemic heart disease (IHD) in Xinxiang, Henan Province, from 2016 to 2021. Using a time-stratified case-crossover design and conditional Poisson regression analysis, we explored the association between atmospheric pollutants (particulate matter with diameter ≤ 2.5 μm [PM<sub>2.5</sub>], particulate matter with diameter ≤ 10 μm [PM<sub>10</sub>], nitrogen dioxide [NO<sub>2</sub>], carbon monoxide [CO]), meteorological factors, and IHD hospitalizations. We evaluated synergistic effects using relative excess risk due to interaction (RERI), attribute proportion (AP), and synergy index (S). PM<sub>2.5</sub>, PM<sub>10</sub>, NO<sub>2</sub>, CO, relative humidity, and cold spells were significantly associated with IHD hospitalization risk. Significant interaction effects (RERI > 0, AP > 0, S > 1) were found in PM<sub>2.5</sub>-PM<sub>10</sub>-NO<sub>2</sub> combinations. The attributable fractions were 3.4-7.3% for pollutant combinations and 8-17% during cold spells with different PM<sub>2.5</sub> levels. Males and individuals aged ≥ 65 were more susceptible to pollutants, while females and elderly individuals showed higher sensitivity to cold spells. These findings provide evidence for optimizing extreme weather warning systems and reducing air pollution exposure to protect public health.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-025-02899-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution and extreme weather events pose a serious threat to human health. We collected atmospheric pollution, meteorological factors, and hospitalisation data for ischemic heart disease (IHD) in Xinxiang, Henan Province, from 2016 to 2021. Using a time-stratified case-crossover design and conditional Poisson regression analysis, we explored the association between atmospheric pollutants (particulate matter with diameter ≤ 2.5 μm [PM2.5], particulate matter with diameter ≤ 10 μm [PM10], nitrogen dioxide [NO2], carbon monoxide [CO]), meteorological factors, and IHD hospitalizations. We evaluated synergistic effects using relative excess risk due to interaction (RERI), attribute proportion (AP), and synergy index (S). PM2.5, PM10, NO2, CO, relative humidity, and cold spells were significantly associated with IHD hospitalization risk. Significant interaction effects (RERI > 0, AP > 0, S > 1) were found in PM2.5-PM10-NO2 combinations. The attributable fractions were 3.4-7.3% for pollutant combinations and 8-17% during cold spells with different PM2.5 levels. Males and individuals aged ≥ 65 were more susceptible to pollutants, while females and elderly individuals showed higher sensitivity to cold spells. These findings provide evidence for optimizing extreme weather warning systems and reducing air pollution exposure to protect public health.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.