Zhengkai Wei, Yuxiao Qian, Xi Jiang, Yuqian Jiang, Rongsheng Huang, Kaifeng He, Jing Huang, Jiaxuan Wang, Xin Guo, Wenlong Huang, Dezhi Zhang, Zhengtao Yang, Quan Liu, Qianyong Li
{"title":"<i>In vitro</i> and <i>in vivo</i> efficacy of aurintricarboxylic acid against <i>Neospora caninum</i> infection.","authors":"Zhengkai Wei, Yuxiao Qian, Xi Jiang, Yuqian Jiang, Rongsheng Huang, Kaifeng He, Jing Huang, Jiaxuan Wang, Xin Guo, Wenlong Huang, Dezhi Zhang, Zhengtao Yang, Quan Liu, Qianyong Li","doi":"10.3724/abbs.2025006","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine neosporosis, a protozoal disease caused by <i>Neospora caninum</i> ( <i>N</i>. <i>caninum</i>), poses a significant threat to the global cattle industry, resulting in substantial economic losses that are difficult to quantify. The current lack of effective commercial vaccines and specific treatments highlights the urgent need for the development of potent drugs against <i>N</i>. <i>caninum</i>. In this study, we investigate the efficacy of aurintricarboxylic acid (ATA), a derivative of polyaromatic carboxylic acid, against <i>N</i>. <i>caninum</i> both <i>in vitro</i> and <i>in vivo</i>. Cell cytotoxicity is evaluated using CCK-8 kits. <i>N</i>. <i>caninum</i> proliferation within cells is assessed by qPCR analysis. Transmission electron microscopy (TEM) is employed to examine the ultrastructures of <i>N</i>. <i>caninum</i> tachyzoites. The efficacy of ATA against <i>N</i>. <i>caninum</i> infection is validated in a mouse model. Our findings indicate that ATA not only inhibits <i>N</i>. <i>caninum</i> proliferation but also reduces parasite loads within individual cells. Furthermore, ATA (20 and 40 μM) has immunomodulatory effects by downregulating the mRNA expressions of <i>N</i> . <i>caninum</i>-induced cytokines, including tumor necrosis factor-α (TNF-α), interferon (IFN-α, -β, and -γ), and β-defensin 5 (BNBD5). ATA treatment directly targets and eliminates <i>N</i>. <i>caninum</i> by disrupting its ultrastructure. The <i>in vivo</i> study confirms the potential of ATA to increase body weight, decrease parasite loads in the lungs and duodenum, and ameliorate the pathological effects induced by <i>N</i> . <i>caninum</i> infection in mice. In conclusion, this study represents the first evidence of the anti- <i>N</i>. <i>caninum</i> ability of ATA and provides compelling data to support its potential as a candidate for developing anti- <i>N</i>. <i>caninum</i> drugs.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bovine neosporosis, a protozoal disease caused by Neospora caninum ( N. caninum), poses a significant threat to the global cattle industry, resulting in substantial economic losses that are difficult to quantify. The current lack of effective commercial vaccines and specific treatments highlights the urgent need for the development of potent drugs against N. caninum. In this study, we investigate the efficacy of aurintricarboxylic acid (ATA), a derivative of polyaromatic carboxylic acid, against N. caninum both in vitro and in vivo. Cell cytotoxicity is evaluated using CCK-8 kits. N. caninum proliferation within cells is assessed by qPCR analysis. Transmission electron microscopy (TEM) is employed to examine the ultrastructures of N. caninum tachyzoites. The efficacy of ATA against N. caninum infection is validated in a mouse model. Our findings indicate that ATA not only inhibits N. caninum proliferation but also reduces parasite loads within individual cells. Furthermore, ATA (20 and 40 μM) has immunomodulatory effects by downregulating the mRNA expressions of N . caninum-induced cytokines, including tumor necrosis factor-α (TNF-α), interferon (IFN-α, -β, and -γ), and β-defensin 5 (BNBD5). ATA treatment directly targets and eliminates N. caninum by disrupting its ultrastructure. The in vivo study confirms the potential of ATA to increase body weight, decrease parasite loads in the lungs and duodenum, and ameliorate the pathological effects induced by N . caninum infection in mice. In conclusion, this study represents the first evidence of the anti- N. caninum ability of ATA and provides compelling data to support its potential as a candidate for developing anti- N. caninum drugs.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.