{"title":"Control of Chemo-Selectivity via Alcohol Affected Kinetics in Cu-Hydroxylamine Catalyzed Aerobic Oxidation of Mesitol.","authors":"Jiaxin Liu, Yongtao Wang, Jia Yao, Haoran Li","doi":"10.1002/chem.202501032","DOIUrl":null,"url":null,"abstract":"<p><p>Chemo-selectivity control is a critical challenge in aerobic C-H oxidations, particularly in preventing overoxidation. In this work, we present an alcohol-tunable strategy to control the oxidation degree of CuCl2/NH2OH·HCl-catalyzed mesitol oxidation in alcohols. In tBuOH, the reaction efficiently yields the aldehyde product with high selectivity, whereas in MeOH, the ether intermediate turned to be the predominant product. Further kinetic analysis and mechanistic studies revealed that the reactivity is driven by the in-situ formation of protonated alkyl nitrate ([RON(O)OH]+), highlighting the critical role of ROH solvents. The differing responses of mesitol and the ether intermediate to the reaction conditions result in distinct kinetics across different alcohols, enabling precise control over the final products. These findings provide mechanistic insights into the origins of alcohol-dependent chemo-selectivity and pave the way for advancing protocols for selectivity control.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202501032"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202501032","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemo-selectivity control is a critical challenge in aerobic C-H oxidations, particularly in preventing overoxidation. In this work, we present an alcohol-tunable strategy to control the oxidation degree of CuCl2/NH2OH·HCl-catalyzed mesitol oxidation in alcohols. In tBuOH, the reaction efficiently yields the aldehyde product with high selectivity, whereas in MeOH, the ether intermediate turned to be the predominant product. Further kinetic analysis and mechanistic studies revealed that the reactivity is driven by the in-situ formation of protonated alkyl nitrate ([RON(O)OH]+), highlighting the critical role of ROH solvents. The differing responses of mesitol and the ether intermediate to the reaction conditions result in distinct kinetics across different alcohols, enabling precise control over the final products. These findings provide mechanistic insights into the origins of alcohol-dependent chemo-selectivity and pave the way for advancing protocols for selectivity control.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.