Pyrolysis-GC/MS differentiates polyesters and detects additives for improved monitoring of textile labeling accuracy and plastic pollution.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Josh Forakis, Jennifer Lynch
{"title":"Pyrolysis-GC/MS differentiates polyesters and detects additives for improved monitoring of textile labeling accuracy and plastic pollution.","authors":"Josh Forakis, Jennifer Lynch","doi":"10.1007/s00216-025-05851-x","DOIUrl":null,"url":null,"abstract":"<p><p>Polyesters comprise the greatest proportion of textile fibers and are found in various everyday goods; hence, polyester fibers are a significant source of microplastic pollution and textile waste. The specific chemical composition of commercial polyester fibers is often proprietary and mostly assumed to be poly(ethylene terephthalate) (PET). Polyester is a class of polymers that include poly(butylene terephthalate) (PBT), poly(cyclohexylenedimethylene terephthalate) (PCT), and poly(ethylene naphthalate) (PEN), as well as biodegradable polymers. Our study aims to clarify whether household polyester products are primarily PET, are labeled accurately, or contain phthalate additives by applying double-shot pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS). We analyzed four scientific-grade polyester reference standards, 52 manufacturer-grade polyester fibers or pellets, and 229 samples from 193 consumer polyester products. From the pyrograms, samples were predominantly identified as PET (87.4%, 95% CI [93.5-81.3%]), but five samples were identified as a different polyester, nine as non-polyester polymers, and 23 as a blend of PET with another polymer. From the thermal desorption chromatograms, diethyl phthalate was the most frequently detected phthalate, found in 23.3% (95% CI [17.3-29.3%]) of the consumer products, including children's toys. Double-shot py-GC/MS advantageously results in these empirical data that (1) counter the assumption that products labeled polyester are always PET, (2) emphasize the importance of creating spectral libraries with well-characterized materials for accurate polymer identification of unknown plastic particles, and (3) demonstrate that phthalates are common additives in household products.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05851-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Polyesters comprise the greatest proportion of textile fibers and are found in various everyday goods; hence, polyester fibers are a significant source of microplastic pollution and textile waste. The specific chemical composition of commercial polyester fibers is often proprietary and mostly assumed to be poly(ethylene terephthalate) (PET). Polyester is a class of polymers that include poly(butylene terephthalate) (PBT), poly(cyclohexylenedimethylene terephthalate) (PCT), and poly(ethylene naphthalate) (PEN), as well as biodegradable polymers. Our study aims to clarify whether household polyester products are primarily PET, are labeled accurately, or contain phthalate additives by applying double-shot pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS). We analyzed four scientific-grade polyester reference standards, 52 manufacturer-grade polyester fibers or pellets, and 229 samples from 193 consumer polyester products. From the pyrograms, samples were predominantly identified as PET (87.4%, 95% CI [93.5-81.3%]), but five samples were identified as a different polyester, nine as non-polyester polymers, and 23 as a blend of PET with another polymer. From the thermal desorption chromatograms, diethyl phthalate was the most frequently detected phthalate, found in 23.3% (95% CI [17.3-29.3%]) of the consumer products, including children's toys. Double-shot py-GC/MS advantageously results in these empirical data that (1) counter the assumption that products labeled polyester are always PET, (2) emphasize the importance of creating spectral libraries with well-characterized materials for accurate polymer identification of unknown plastic particles, and (3) demonstrate that phthalates are common additives in household products.

热解- gc /MS区分聚酯和检测添加剂,以提高纺织品标签准确性和塑料污染的监测。
聚酯在纺织纤维中所占比例最大,在各种日常用品中都有发现;因此,聚酯纤维是微塑料污染和纺织废料的重要来源。商业聚酯纤维的特定化学成分通常是专有的,大多被认为是聚对苯二甲酸乙酯(PET)。聚酯是一类聚合物,包括聚对苯二甲酸丁二酯(PBT),聚对苯二甲酸环己二甲基酯(PCT)和聚萘二甲酸乙酯(PEN),以及可生物降解的聚合物。我们的研究旨在通过双枪热解-气相色谱/质谱(Py-GC/MS)来澄清家用聚酯产品是否主要是PET,是否被准确标记,或者是否含有邻苯二甲酸盐添加剂。我们分析了四种科学级聚酯参考标准,52种制造商级聚酯纤维或颗粒,以及来自193种消费聚酯产品的229种样品。从热图来看,样品主要被鉴定为PET (87.4%, 95% CI[93.5-81.3%]),但5个样品被鉴定为不同的聚酯,9个为非聚酯聚合物,23个为PET与另一种聚合物的共混物。从热解吸色谱中,邻苯二甲酸二乙酯是最常检测到的邻苯二甲酸酯,在包括儿童玩具在内的23.3%的消费品中发现(95% CI[17.3-29.3%])。双投式pyp - gc /MS有利地获得了这些经验数据:(1)反驳了标记为聚酯的产品总是PET的假设,(2)强调了用表征良好的材料创建光谱库的重要性,以准确识别未知塑料颗粒的聚合物,(3)证明邻苯二甲酸盐是家用产品中常见的添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信