The RNA m6A Methyltransferase PheMTA1 and PheMTA2 of Moso Bamboo Regulate Root Development and Resistance to Salt Stress in Plant.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Huihui Wang, Huiyuan Wang, Yue Jia, Xiaoxia Jin, Hongwei Wu, Siyu Yang, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu
{"title":"The RNA m<sup>6</sup>A Methyltransferase PheMTA1 and PheMTA2 of Moso Bamboo Regulate Root Development and Resistance to Salt Stress in Plant.","authors":"Huihui Wang, Huiyuan Wang, Yue Jia, Xiaoxia Jin, Hongwei Wu, Siyu Yang, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu","doi":"10.1111/pce.15494","DOIUrl":null,"url":null,"abstract":"<p><p>As the most prevalent RNA modification in eukaryotes, N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) plays a crucial role in regulating various biological processes in plants, including embryonic development and flowering. However, the function of m<sup>6</sup>A RNA methyltransferase in moso bamboo remains poorly understood. In this study, we identified two m<sup>6</sup>A methyltransferases in moso bamboo, PheMTA1 and PheMTA2. Overexpression of PheMTA1 and PheMTA2 significantly promoted root development and enhanced salt tolerance in rice. Using the HyperTRIBE method, we fused PheMTA1 and PheMTA2 with ADARcd<sup>E488Q</sup> and introduced them into rice. RNA sequencing (RNA-seq) of the overexpressing rice identified the target RNAs bound by PheMTA1 and PheMTA2. PheMTA1 and PheMTA2 bind to OsATM3 and OsSF3B1, which were involved in the development of root and salt resistance. Finally, we revealed the effects of transcription or alternative splicing on resistance-related genes like OsRS33, OsPRR73, OsAPX2 and OsHAP2E, which are associated with the observed phenotype. In conclusion, our study demonstrates that the m<sup>6</sup>A methyltransferases PheMTA1 and PheMTA2 from moso bamboo are involved in root development and enhance plant resistance to salt stress.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15494","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the most prevalent RNA modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in regulating various biological processes in plants, including embryonic development and flowering. However, the function of m6A RNA methyltransferase in moso bamboo remains poorly understood. In this study, we identified two m6A methyltransferases in moso bamboo, PheMTA1 and PheMTA2. Overexpression of PheMTA1 and PheMTA2 significantly promoted root development and enhanced salt tolerance in rice. Using the HyperTRIBE method, we fused PheMTA1 and PheMTA2 with ADARcdE488Q and introduced them into rice. RNA sequencing (RNA-seq) of the overexpressing rice identified the target RNAs bound by PheMTA1 and PheMTA2. PheMTA1 and PheMTA2 bind to OsATM3 and OsSF3B1, which were involved in the development of root and salt resistance. Finally, we revealed the effects of transcription or alternative splicing on resistance-related genes like OsRS33, OsPRR73, OsAPX2 and OsHAP2E, which are associated with the observed phenotype. In conclusion, our study demonstrates that the m6A methyltransferases PheMTA1 and PheMTA2 from moso bamboo are involved in root development and enhance plant resistance to salt stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信