Finite element analysis safety of tibial cortex transverse transport.

IF 4.7 2区 医学 Q2 CELL & TISSUE ENGINEERING
Hongjie Su, Puxiang Zhen, Jun Hou, Wencong Qin, Jie Liu, Kaixiang Pan, Guan Jack, Xinyu Nie, Qikai Hua, Jinmin Zhao
{"title":"Finite element analysis safety of tibial cortex transverse transport.","authors":"Hongjie Su, Puxiang Zhen, Jun Hou, Wencong Qin, Jie Liu, Kaixiang Pan, Guan Jack, Xinyu Nie, Qikai Hua, Jinmin Zhao","doi":"10.1302/2046-3758.144.BJR-2024-0157.R1","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Tibial cortex transverse transport (TTT) represents an innovative surgical technique used in managing lower limb ischaemic conditions, focusing specifically on diabetic foot ulcers. This study aimed to assess the safety of TTT by evaluating the stress magnitude and distribution on the tibia and tibial osteotomy blocks.</p><p><strong>Methods: </strong>A 3D finite element model was developed to simulate the TTT system, including the tibia, osteotomy blocks, skin, and TTT device. The models were reconstructed using Mimics, Geomagic, and SolidWorks, and analyzed with Ansys finite element processing software. To estimate the fracture risk under specific conditions, we calculated the stress limits and distribution the tibia could withstand without fracturing under various loading scenarios, such as torsion and axial compression.</p><p><strong>Results: </strong>The results indicate that stress on the tibial cortex increased progressively with the advancement of bone transport fixation adjustment, and was primarily concentrated around the pinholes used to lift the osteotomy block. No significant differences were observed between the control and TTT groups.</p><p><strong>Conclusion: </strong>Through finite element analysis, it was determined that TTT does not compromise the overall stability of the tibia, and the TTT device provides protection against bone fracture caused by window-cutting in diabetic patients. Therefore, to preserve the TTT system's stability, its components must be protected from high-impact forces.</p>","PeriodicalId":9074,"journal":{"name":"Bone & Joint Research","volume":"14 4","pages":"281-291"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1302/2046-3758.144.BJR-2024-0157.R1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Tibial cortex transverse transport (TTT) represents an innovative surgical technique used in managing lower limb ischaemic conditions, focusing specifically on diabetic foot ulcers. This study aimed to assess the safety of TTT by evaluating the stress magnitude and distribution on the tibia and tibial osteotomy blocks.

Methods: A 3D finite element model was developed to simulate the TTT system, including the tibia, osteotomy blocks, skin, and TTT device. The models were reconstructed using Mimics, Geomagic, and SolidWorks, and analyzed with Ansys finite element processing software. To estimate the fracture risk under specific conditions, we calculated the stress limits and distribution the tibia could withstand without fracturing under various loading scenarios, such as torsion and axial compression.

Results: The results indicate that stress on the tibial cortex increased progressively with the advancement of bone transport fixation adjustment, and was primarily concentrated around the pinholes used to lift the osteotomy block. No significant differences were observed between the control and TTT groups.

Conclusion: Through finite element analysis, it was determined that TTT does not compromise the overall stability of the tibia, and the TTT device provides protection against bone fracture caused by window-cutting in diabetic patients. Therefore, to preserve the TTT system's stability, its components must be protected from high-impact forces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone & Joint Research
Bone & Joint Research CELL & TISSUE ENGINEERING-ORTHOPEDICS
CiteScore
7.40
自引率
23.90%
发文量
156
审稿时长
12 weeks
期刊介绍: The gold open access journal for the musculoskeletal sciences. Included in PubMed and available in PubMed Central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信