Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Jingpeng Liu, Ximiao Shi, Zhitai Zhang, Xuexiang Cen, Lixian Lin, Xiaowei Wang, Zhongxian Chen, Yu Zhang, Xiangzi Zheng, Binghua Wu, Ying Miao
{"title":"Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq.","authors":"Jingpeng Liu, Ximiao Shi, Zhitai Zhang, Xuexiang Cen, Lixian Lin, Xiaowei Wang, Zhongxian Chen, Yu Zhang, Xiangzi Zheng, Binghua Wu, Ying Miao","doi":"10.1111/pce.15489","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15489","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信