{"title":"Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq.","authors":"Jingpeng Liu, Ximiao Shi, Zhitai Zhang, Xuexiang Cen, Lixian Lin, Xiaowei Wang, Zhongxian Chen, Yu Zhang, Xiangzi Zheng, Binghua Wu, Ying Miao","doi":"10.1111/pce.15489","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15489","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.