An elastoplastic model approach for the relaxation dynamics of active glasses.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2025-03-31 DOI:10.1039/d4sm01394h
Tanmoy Ghosh, Peter Sollich, Saroj Kumar Nandi
{"title":"An elastoplastic model approach for the relaxation dynamics of active glasses.","authors":"Tanmoy Ghosh, Peter Sollich, Saroj Kumar Nandi","doi":"10.1039/d4sm01394h","DOIUrl":null,"url":null,"abstract":"<p><p>How activity affects the glassy dynamics is crucial for several biological processes. Furthermore, active glasses offer fascinating phenomenologies, extend the scope of equilibrium glass-forming liquids, and can provide novel insights into the original problem. We introduce a family of novel approaches to investigating the relaxation dynamics of active glasses <i>via</i> an active elastoplastic model (EPM). These approaches describe the relaxation dynamics <i>via</i> local plastic yielding and can provide improved insights as we can study various aspects of the system separately. Activity enters the model <i>via</i> three crucial features: activity-mediated plastic yielding, activated barrier crossing, and persistent rotational dynamics of the yielding direction. We first consider a minimal active EPM that adds the effect of active yielding to a thermal EPM. We show that this active EPM captures the known results of active glasses within a reasonable parameter space. The results also agree well with the analytical results for active glasses when activity is small. The minimal model breaks down at very low temperatures where other effects become important. Looking at the broader model class, we demonstrate that whereas active yielding primarily dominates the relaxation dynamics, the persistence of the yielding direction governs the dynamic heterogeneity in active glasses.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01394h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

How activity affects the glassy dynamics is crucial for several biological processes. Furthermore, active glasses offer fascinating phenomenologies, extend the scope of equilibrium glass-forming liquids, and can provide novel insights into the original problem. We introduce a family of novel approaches to investigating the relaxation dynamics of active glasses via an active elastoplastic model (EPM). These approaches describe the relaxation dynamics via local plastic yielding and can provide improved insights as we can study various aspects of the system separately. Activity enters the model via three crucial features: activity-mediated plastic yielding, activated barrier crossing, and persistent rotational dynamics of the yielding direction. We first consider a minimal active EPM that adds the effect of active yielding to a thermal EPM. We show that this active EPM captures the known results of active glasses within a reasonable parameter space. The results also agree well with the analytical results for active glasses when activity is small. The minimal model breaks down at very low temperatures where other effects become important. Looking at the broader model class, we demonstrate that whereas active yielding primarily dominates the relaxation dynamics, the persistence of the yielding direction governs the dynamic heterogeneity in active glasses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信