A simulation method for highly entangled polymer nanocomposites: scaling exponents of slip-spring age among free and grafted chains, grafting density and nanoparticle/polymer interaction dependence on particle dispersion.
Semen Vasin, Gaetan Maurel, Taiji Mikami, Corentin Hermange, Iurii Chubak, Robert J Tannenbaum, Sarah C Seeger, Catherine Gauthier, Marc Couty
{"title":"A simulation method for highly entangled polymer nanocomposites: scaling exponents of slip-spring age among free and grafted chains, grafting density and nanoparticle/polymer interaction dependence on particle dispersion.","authors":"Semen Vasin, Gaetan Maurel, Taiji Mikami, Corentin Hermange, Iurii Chubak, Robert J Tannenbaum, Sarah C Seeger, Catherine Gauthier, Marc Couty","doi":"10.1039/d4sm01167h","DOIUrl":null,"url":null,"abstract":"<p><p>We present an extension of the SLIPLINK technology introduced by A. Likhtman to polymer nanocomposites in order to model explicitly free and grafted chains. Entanglements are explicitly modeled by slip-springs (SS) and follow the constraint release algorithm of destruction/recreation when reaching the chain end. Following the birth/death process, one can compute the age of slip-springs and the entire population age pyramid. We varied nanoparticle volume fraction, grafting density, and polymer/particle interactions to determine structural and dynamic properties of the nanocomposite materials. Scaling laws for slip-springs average age <i>versus</i> chain length have been obtained. While the dynamics of slip-springs between free chains in the nanocomposite is almost identical to that of a pure polymer melt, a characteristic exponent close to 3.7 has emerged governing the average age of slip-springs between grafted chains. The number of inter-particle graft-graft entanglements and their increased average lifetimes have a strong impact on the viscoelastic response of the material and the nanoparticle cluster formation. The emergence of polymer network elasticity will be discussed for high grafting density and high-volume fraction.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01167h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present an extension of the SLIPLINK technology introduced by A. Likhtman to polymer nanocomposites in order to model explicitly free and grafted chains. Entanglements are explicitly modeled by slip-springs (SS) and follow the constraint release algorithm of destruction/recreation when reaching the chain end. Following the birth/death process, one can compute the age of slip-springs and the entire population age pyramid. We varied nanoparticle volume fraction, grafting density, and polymer/particle interactions to determine structural and dynamic properties of the nanocomposite materials. Scaling laws for slip-springs average age versus chain length have been obtained. While the dynamics of slip-springs between free chains in the nanocomposite is almost identical to that of a pure polymer melt, a characteristic exponent close to 3.7 has emerged governing the average age of slip-springs between grafted chains. The number of inter-particle graft-graft entanglements and their increased average lifetimes have a strong impact on the viscoelastic response of the material and the nanoparticle cluster formation. The emergence of polymer network elasticity will be discussed for high grafting density and high-volume fraction.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.