{"title":"Telomeres in skin aging.","authors":"Zibin Liu, Chang Sun, Zhaofeng Zhang, Yanfei Jiang, Chunyue Zhao","doi":"10.1007/s10522-025-10228-9","DOIUrl":null,"url":null,"abstract":"<p><p>Skin aging is influenced by both intrinsic and extrinsic factors. The gradual manifestation of changes in telomere length and telomerase activity, as crucial indicators of aging, elucidates the underlying mechanism of skin aging. This review aims to comprehensively analyze the association between telomeres and aging, along with their impact on skin biological function. Firstly, we summarize the structure and function of telomeres and their role in cell division. Subsequently, we discuss the mechanisms through which telomere regulation contributes to aging processes while analyzing its involvement in skin aging by elaborating on biological markers. Furthermore, this paper presents a summary of recent research progress that reveals the correlation between telomere length and skin aging as well as model building methods; it also proposes telomere length as a potential indicator for predicting skin aging. Finally, anti-aging strategies based on telomere protection are discussed including drug therapy and lifestyle adjustments. This paper provides a systematic overview of the role played by telomeres in the field of skin aging for the first time, offering new perspectives and ideas for future prevention and treatment.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"83"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10228-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin aging is influenced by both intrinsic and extrinsic factors. The gradual manifestation of changes in telomere length and telomerase activity, as crucial indicators of aging, elucidates the underlying mechanism of skin aging. This review aims to comprehensively analyze the association between telomeres and aging, along with their impact on skin biological function. Firstly, we summarize the structure and function of telomeres and their role in cell division. Subsequently, we discuss the mechanisms through which telomere regulation contributes to aging processes while analyzing its involvement in skin aging by elaborating on biological markers. Furthermore, this paper presents a summary of recent research progress that reveals the correlation between telomere length and skin aging as well as model building methods; it also proposes telomere length as a potential indicator for predicting skin aging. Finally, anti-aging strategies based on telomere protection are discussed including drug therapy and lifestyle adjustments. This paper provides a systematic overview of the role played by telomeres in the field of skin aging for the first time, offering new perspectives and ideas for future prevention and treatment.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.