3D Printed Sodiophilic Reduced Graphene Oxide/Diamane Microlattice Aerogel for Enhanced Sodium Metal Battery Anodes.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengmeng Liu, Dezhi Kong, Ningning Chu, Gang Zhi, Hui Wang, Tingting Xu, Xinchang Wang, Xinjian Li, Zhuangfei Zhang, Hui Ying Yang, Ye Wang
{"title":"3D Printed Sodiophilic Reduced Graphene Oxide/Diamane Microlattice Aerogel for Enhanced Sodium Metal Battery Anodes.","authors":"Mengmeng Liu, Dezhi Kong, Ningning Chu, Gang Zhi, Hui Wang, Tingting Xu, Xinchang Wang, Xinjian Li, Zhuangfei Zhang, Hui Ying Yang, Ye Wang","doi":"10.1002/advs.202417638","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium metal anode holds great potential for high energy density sodium batteries. However, its practical utilization is impeded by significant volume change and uncontrolled dendrite growth. To tackle these issues, a three-dimensional (3D) hierarchical porous sodiophilic reduced graphene oxide/diamane (rGO/diamane) microlattice aerogel is constructed by a direct ink writing (DIW) 3D printing (3DP) method. The molten Na is diffused into the rGO/diamane host to form Na@rGO/diamane anode, which can deliver an ultra-high capacity of 78.60 mAh cm<sup>-2</sup> (1090.94 mAh g<sup>-1</sup>). Benefiting from uniform ion distribution and homogeneously distributed sodiophilic diamane enabled dendrite-free deposition morphology, the Na@rGO/diamane anodes exhibit a long cycle-life of over 7200 h at 1 mA cm<sup>-2</sup> with 1 mAh cm<sup>-2</sup>. Furthermore, the Na@rGO/diamane anode also enhances the long-term stability at an elevated operation temperature of 60 °C, sustaining a prolonged lifespan of 400 h at 1 mA cm<sup>-2</sup> with 1 mAh cm<sup>-2</sup>. Notably, when integrated with the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@carbon (NVP@C) cathode and Na@rGO/diamane anode, the full cell delivers sustained longevity, maintaining a lifespan of over 2000 cycles with a capacity retention rate of 95.72%. This work sheds new insights into the application of diamane for the development of stable and high-performance sodium metal batteries.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2417638"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202417638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium metal anode holds great potential for high energy density sodium batteries. However, its practical utilization is impeded by significant volume change and uncontrolled dendrite growth. To tackle these issues, a three-dimensional (3D) hierarchical porous sodiophilic reduced graphene oxide/diamane (rGO/diamane) microlattice aerogel is constructed by a direct ink writing (DIW) 3D printing (3DP) method. The molten Na is diffused into the rGO/diamane host to form Na@rGO/diamane anode, which can deliver an ultra-high capacity of 78.60 mAh cm-2 (1090.94 mAh g-1). Benefiting from uniform ion distribution and homogeneously distributed sodiophilic diamane enabled dendrite-free deposition morphology, the Na@rGO/diamane anodes exhibit a long cycle-life of over 7200 h at 1 mA cm-2 with 1 mAh cm-2. Furthermore, the Na@rGO/diamane anode also enhances the long-term stability at an elevated operation temperature of 60 °C, sustaining a prolonged lifespan of 400 h at 1 mA cm-2 with 1 mAh cm-2. Notably, when integrated with the Na3V2(PO4)3@carbon (NVP@C) cathode and Na@rGO/diamane anode, the full cell delivers sustained longevity, maintaining a lifespan of over 2000 cycles with a capacity retention rate of 95.72%. This work sheds new insights into the application of diamane for the development of stable and high-performance sodium metal batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信