Neutrophil Membrane-Encapsulated Polymerized Salicylic Acid Nanoparticles Effectively Alleviating Rheumatoid Arthritis by Facilitating Sustained Release of Salicylic Acid into the Articular Cavity from Chondrocytes.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Luying Yang, Feng Cao, Jiayu Lu, Simo Wu, Le Wang, Jianzhen She, Boling He, Xiaoying Xu, Fan Shi, Ye Gao, Zhou Ye, Baolin Guo, Liang Kong, Ronghua Jin, Bolei Cai
{"title":"Neutrophil Membrane-Encapsulated Polymerized Salicylic Acid Nanoparticles Effectively Alleviating Rheumatoid Arthritis by Facilitating Sustained Release of Salicylic Acid into the Articular Cavity from Chondrocytes.","authors":"Luying Yang, Feng Cao, Jiayu Lu, Simo Wu, Le Wang, Jianzhen She, Boling He, Xiaoying Xu, Fan Shi, Ye Gao, Zhou Ye, Baolin Guo, Liang Kong, Ronghua Jin, Bolei Cai","doi":"10.1002/adhm.202404510","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily instigates chronic inflammation in multiple joints. Salicylic acid (SA) is a classic anti-inflammatory agent for the treatment of RA. To enhance the therapeutic effect of SA, an innovative therapeutic approach for RA is developed by encapsulating polymerized-SA (PSA) nanoparticles within neutrophil membranes. The study demonstrated that neutrophil membranes endowed PSAs with the ability to selectively target inflammatory joints in RA mice, where they specifically accumulated within the inflammatory chondrocytes. The internalized PSAs underwent gradual degradation into SA within chondrocytes, facilitating sustained release into the articular cavity and effectively alleviating RA symptoms. By attenuating the expression of inflammatory mediators within the joint cavity and suppressing neutrophil extracellular traps (NETs) in the synovium, neutrophil membrane encapsulated polymerized salicylic acid nanoparticles (N-PSAs) effectively restore long-term intra-articular homeostasis in RA mice, thereby establishing a conducive microenvironment for cartilage repair. In summary, the articular chondrocytes represent an optimal reservoir for therapeutic agents targeting joint disorders. By conferring PSA with the capability to specifically target inflammatory chondrocytes, the neutrophil membrane-coated drug-polymerized nanoparticles offer a promising therapeutic strategy for the management of rheumatoid arthritis (RA) and serve as a valuable reference for treating other inflammatory joint disorders.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404510"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404510","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily instigates chronic inflammation in multiple joints. Salicylic acid (SA) is a classic anti-inflammatory agent for the treatment of RA. To enhance the therapeutic effect of SA, an innovative therapeutic approach for RA is developed by encapsulating polymerized-SA (PSA) nanoparticles within neutrophil membranes. The study demonstrated that neutrophil membranes endowed PSAs with the ability to selectively target inflammatory joints in RA mice, where they specifically accumulated within the inflammatory chondrocytes. The internalized PSAs underwent gradual degradation into SA within chondrocytes, facilitating sustained release into the articular cavity and effectively alleviating RA symptoms. By attenuating the expression of inflammatory mediators within the joint cavity and suppressing neutrophil extracellular traps (NETs) in the synovium, neutrophil membrane encapsulated polymerized salicylic acid nanoparticles (N-PSAs) effectively restore long-term intra-articular homeostasis in RA mice, thereby establishing a conducive microenvironment for cartilage repair. In summary, the articular chondrocytes represent an optimal reservoir for therapeutic agents targeting joint disorders. By conferring PSA with the capability to specifically target inflammatory chondrocytes, the neutrophil membrane-coated drug-polymerized nanoparticles offer a promising therapeutic strategy for the management of rheumatoid arthritis (RA) and serve as a valuable reference for treating other inflammatory joint disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信