Daixi Xie, Bingda Chen, Wenqing Wang, Wenjing Guo, Zhiyuan Sun, Long Wang, Bin Shi, Yanlin Song, Meng Su
{"title":"Nanocomposite Hydrogels and Micro/Nanostructures for Printing Organoids.","authors":"Daixi Xie, Bingda Chen, Wenqing Wang, Wenjing Guo, Zhiyuan Sun, Long Wang, Bin Shi, Yanlin Song, Meng Su","doi":"10.1021/acsnano.4c17587","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids are 3D artificial miniature organs composed of a cluster of self-renewing and self-organizing cells <i>in vitro</i>, which mimic the functions of real organs. Nanotechnologies, including the preparation of nanomaterials and the fabrication of micro/nanostructures, have been proven to promote cell proliferation, guide cell differentiation, and regulate cell self-organization, showing great promise in engineering organoids. In this Perspective, different types of nanocomposite hydrogels for organoid culture are summarized, the effects of micro/nanostructures on organoid growth and development are discussed, and 3D bioprinting technologies for constructing organoid models are introduced.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organoids are 3D artificial miniature organs composed of a cluster of self-renewing and self-organizing cells in vitro, which mimic the functions of real organs. Nanotechnologies, including the preparation of nanomaterials and the fabrication of micro/nanostructures, have been proven to promote cell proliferation, guide cell differentiation, and regulate cell self-organization, showing great promise in engineering organoids. In this Perspective, different types of nanocomposite hydrogels for organoid culture are summarized, the effects of micro/nanostructures on organoid growth and development are discussed, and 3D bioprinting technologies for constructing organoid models are introduced.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.