Shuaipeng Feng, Qingqing Xu, Bin Liu, Ye He, Luming Song, Qinfu Zhao, Siling Wang
{"title":"Modulating Intracellular Autophagy and Macropinocytosis for Increased Neighboring Drug Delivery.","authors":"Shuaipeng Feng, Qingqing Xu, Bin Liu, Ye He, Luming Song, Qinfu Zhao, Siling Wang","doi":"10.1021/acsnano.4c18465","DOIUrl":null,"url":null,"abstract":"<p><p>Neighboring effects provided a valuable direction for in-depth penetration of nanoparticles into tumors. However, the uncontrollable drug transcytosis and limited drug uptake hindered by viscous cancer-associated fibroblasts (CAFs) greatly limit their in-depth penetration. Here, we proposed and demonstrated that intracellular autophagosomes could carry the remaining drugs to neighboring cells, and the enhanced macropinocytosis played a major role in neighboring delivery. To enhance the autophagosome-based neighboring delivery, Ca<sup>2+</sup>-doped polydopamine was prepared to load GLS1 inhibitor CB-839 and modified glutamine (839/CG) for triggering macropinocytosis-based active cells uptake. After Ca<sup>2+</sup>-release caused lysosome damage, 839/CG escaped from lysosomes and hindered the autophagosome maturation. Then, Ca<sup>2+</sup>-induced endoplasmic reticulum oscillations and glutamine starvation both increased and blocked autophagy flow, causing 839/CG-contained autophagosome accumulation. Meanwhile, the tumor increased its macropinocytosis in response to mTOR downregulation-induced glutamine hunger, causing \"the more you eat, the hungrier you get\". After tumor death, the 839/CG-contained autophagosomes were released and actively ingested by neighboring hungry tumor cells through macropinocytosis. Combined with the photothermal effect triggered CAF decrease, neighboring cells repeated the above process for in-depth tumor delivery. Also, immunogenic death enhanced the antigen presentation of DCs and infiltration of T cells, thereby inhibiting tumor growth and lung metastasis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neighboring effects provided a valuable direction for in-depth penetration of nanoparticles into tumors. However, the uncontrollable drug transcytosis and limited drug uptake hindered by viscous cancer-associated fibroblasts (CAFs) greatly limit their in-depth penetration. Here, we proposed and demonstrated that intracellular autophagosomes could carry the remaining drugs to neighboring cells, and the enhanced macropinocytosis played a major role in neighboring delivery. To enhance the autophagosome-based neighboring delivery, Ca2+-doped polydopamine was prepared to load GLS1 inhibitor CB-839 and modified glutamine (839/CG) for triggering macropinocytosis-based active cells uptake. After Ca2+-release caused lysosome damage, 839/CG escaped from lysosomes and hindered the autophagosome maturation. Then, Ca2+-induced endoplasmic reticulum oscillations and glutamine starvation both increased and blocked autophagy flow, causing 839/CG-contained autophagosome accumulation. Meanwhile, the tumor increased its macropinocytosis in response to mTOR downregulation-induced glutamine hunger, causing "the more you eat, the hungrier you get". After tumor death, the 839/CG-contained autophagosomes were released and actively ingested by neighboring hungry tumor cells through macropinocytosis. Combined with the photothermal effect triggered CAF decrease, neighboring cells repeated the above process for in-depth tumor delivery. Also, immunogenic death enhanced the antigen presentation of DCs and infiltration of T cells, thereby inhibiting tumor growth and lung metastasis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.