Azobenzene-Grafted Acrylate Coatings to Modulate Lens Epithelial Cells.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sumaiya Karim, Laura A Wells
{"title":"Azobenzene-Grafted Acrylate Coatings to Modulate Lens Epithelial Cells.","authors":"Sumaiya Karim, Laura A Wells","doi":"10.1021/acsbiomaterials.4c02214","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric intraocular lenses (IOLs) are prosthetics used to replace cataracts to restore vision. However, in 20% or more of cases, lens epithelial cells (LECs) remaining after surgery migrate along the IOL and posterior capsule, causing new vision anomalies, termed posterior capsule opacification (PCO). The surface of the polymeric IOL is identified as a leading factor for the development of their failure, and we hypothesize that specialized coatings could mitigate or prevent these failures. Azobenzene was grafted to coatings made of poly(methacrylic acid-<i>co</i>-isodecyl acrylate) (MAAcoIDA) and poly(methyl methacrylate-<i>co</i>-isodecyl acrylate) (MMcoIDA) to produce a library of acrylic coatings. The azobenzene on the surface of these coatings could reversibly photoisomerize with 365 nm light and complex with β-cyclodextrin (β-CD). Human LEC cell line, B3-LECs, grown on these coatings had modulated protein and gene expression, with lower α-smooth muscle actin protein expression and inflammatory interleukin 6 gene expression in cells incubated on all of the variations of MMcoIDA compared to MAAcoIDA. Azobenzene modifications with and without UV and β-CD treatment also modulated cell behavior where cells on azobenzene-modified MAAcoIDA had decreased live/dead ratios after UV treatments, a potential method to reduce LEC viability. The cells on β-CD-treated azobenzene-modified MAAcoIDA had differences in cell adhesion after UV treatments, illustrating that UV light can be applied to modulate cell behavior in conjunction with β-CD. The different coatings present methods to modulate LEC adhesion, death, and behavior, temporarily when dependent on UV treatments.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02214","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric intraocular lenses (IOLs) are prosthetics used to replace cataracts to restore vision. However, in 20% or more of cases, lens epithelial cells (LECs) remaining after surgery migrate along the IOL and posterior capsule, causing new vision anomalies, termed posterior capsule opacification (PCO). The surface of the polymeric IOL is identified as a leading factor for the development of their failure, and we hypothesize that specialized coatings could mitigate or prevent these failures. Azobenzene was grafted to coatings made of poly(methacrylic acid-co-isodecyl acrylate) (MAAcoIDA) and poly(methyl methacrylate-co-isodecyl acrylate) (MMcoIDA) to produce a library of acrylic coatings. The azobenzene on the surface of these coatings could reversibly photoisomerize with 365 nm light and complex with β-cyclodextrin (β-CD). Human LEC cell line, B3-LECs, grown on these coatings had modulated protein and gene expression, with lower α-smooth muscle actin protein expression and inflammatory interleukin 6 gene expression in cells incubated on all of the variations of MMcoIDA compared to MAAcoIDA. Azobenzene modifications with and without UV and β-CD treatment also modulated cell behavior where cells on azobenzene-modified MAAcoIDA had decreased live/dead ratios after UV treatments, a potential method to reduce LEC viability. The cells on β-CD-treated azobenzene-modified MAAcoIDA had differences in cell adhesion after UV treatments, illustrating that UV light can be applied to modulate cell behavior in conjunction with β-CD. The different coatings present methods to modulate LEC adhesion, death, and behavior, temporarily when dependent on UV treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信