{"title":"Targeted Delivery of Acid-Responsive Rutin Nanoparticles Based on Aldehyde Adsorption for the Treatment of Spinal Cord Injury in Rats.","authors":"Chuanyu He, Yongjie Wang, Weiquan Gong, Shaokun Zhang","doi":"10.1021/acsbiomaterials.5c00038","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) can cause irreversible nerve damage, imposing a significant burden on both patients and society. Methylprednisolone (MP), the recommended clinical drug, possesses antioxidant, anti-inflammatory, and antiapoptotic effects. It improves nerve damage by inhibiting secondary pathological processes. However, high-dose MP administration may result in side effects, including diabetes, femoral head necrosis, and infections. Therefore, there is a need to identify safer alternatives to mitigate the issues associated with MP administration. Rutin, a natural small molecule, exhibits multifaceted therapeutic capabilities and high biosafety, making it a promising alternative to MP treatment. However, its poor solubility and rapid metabolism limit its <i>in vivo</i> bioavailability. In this study, a drug-free polypeptide (PAH) containing hydrazide groups on the side chains is designed, which can be used for mitigating secondary SCI through scavenging toxic aldehydes. Then, we utilize PAH to encapsulate rutin and develop aldehyde-responsive nanomedicine for intravenous administration in SCI rats, providing a novel approach for the clinical replacement of MP.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"2192-2202"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) can cause irreversible nerve damage, imposing a significant burden on both patients and society. Methylprednisolone (MP), the recommended clinical drug, possesses antioxidant, anti-inflammatory, and antiapoptotic effects. It improves nerve damage by inhibiting secondary pathological processes. However, high-dose MP administration may result in side effects, including diabetes, femoral head necrosis, and infections. Therefore, there is a need to identify safer alternatives to mitigate the issues associated with MP administration. Rutin, a natural small molecule, exhibits multifaceted therapeutic capabilities and high biosafety, making it a promising alternative to MP treatment. However, its poor solubility and rapid metabolism limit its in vivo bioavailability. In this study, a drug-free polypeptide (PAH) containing hydrazide groups on the side chains is designed, which can be used for mitigating secondary SCI through scavenging toxic aldehydes. Then, we utilize PAH to encapsulate rutin and develop aldehyde-responsive nanomedicine for intravenous administration in SCI rats, providing a novel approach for the clinical replacement of MP.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture