Synergistic Therapeutic Effects of Prussian Blue Erbium-Doped Hydroxyapatite Nanoparticles in Photothermal Photodynamic Cancer Therapy.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thi Thuy Truong, Vu Hoang Minh Doan, Dinh Quan Nguyen, Quoc Dung Nguyen, Jaeyeop Choi, Bharathiraja Subramaniyan, Jaesung Ahn, Byeongil Lee, Junghwan Oh, Sudip Mondal
{"title":"Synergistic Therapeutic Effects of Prussian Blue Erbium-Doped Hydroxyapatite Nanoparticles in Photothermal Photodynamic Cancer Therapy.","authors":"Thi Thuy Truong, Vu Hoang Minh Doan, Dinh Quan Nguyen, Quoc Dung Nguyen, Jaeyeop Choi, Bharathiraja Subramaniyan, Jaesung Ahn, Byeongil Lee, Junghwan Oh, Sudip Mondal","doi":"10.1021/acsbiomaterials.5c00027","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the synergistic therapeutic potential of Prussian Blue Erbium-Doped Hydroxyapatite (PB-Er-HAp) bioceramics in the context of photothermal therapy (PTT) and photodynamic therapy (PDT) for cancer treatment, highlighting their role in multimodal therapeutic approaches and imaging. PB-Er-HAp nanoparticles (NPs) were synthesized using a facile coprecipitation method to incorporate erbium (Er) into nanostructured hydroxyapatite (HAp) at various concentrations. Prussian Blue (PB) was functionalized onto the surfaces of these NPs, resulting in a final particle size of less than 50 nm. The therapeutic efficacy of the synthesized 1.0 mol % PB-Er-HAp NPs was evaluated <i>in vitro</i>, using MDA-MB-231 breast cancer cells. <i>In vitro</i> studies demonstrated that the PB-Er-HAp NPs exhibited significant PTT and PDT effects under 808 nm laser irradiation, effectively inducing cancer cell death through heat generation and reactive oxygen species production, respectively. <i>In vitro</i> experiments validated the ability of NPs to inhibit tumor growth in the MDA-MB-231 breast cancer cell line. This study emphasizes the potential of PB-Er-HAp NPs as a versatile platform for synergistic cancer therapy, combining PTT and PDT effects, while offering capabilities for biomedical imaging. Future research aims to further optimize these NPs and explore their clinical application, aiming toward enhanced therapeutic outcomes in cancer treatment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"2639-2652"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the synergistic therapeutic potential of Prussian Blue Erbium-Doped Hydroxyapatite (PB-Er-HAp) bioceramics in the context of photothermal therapy (PTT) and photodynamic therapy (PDT) for cancer treatment, highlighting their role in multimodal therapeutic approaches and imaging. PB-Er-HAp nanoparticles (NPs) were synthesized using a facile coprecipitation method to incorporate erbium (Er) into nanostructured hydroxyapatite (HAp) at various concentrations. Prussian Blue (PB) was functionalized onto the surfaces of these NPs, resulting in a final particle size of less than 50 nm. The therapeutic efficacy of the synthesized 1.0 mol % PB-Er-HAp NPs was evaluated in vitro, using MDA-MB-231 breast cancer cells. In vitro studies demonstrated that the PB-Er-HAp NPs exhibited significant PTT and PDT effects under 808 nm laser irradiation, effectively inducing cancer cell death through heat generation and reactive oxygen species production, respectively. In vitro experiments validated the ability of NPs to inhibit tumor growth in the MDA-MB-231 breast cancer cell line. This study emphasizes the potential of PB-Er-HAp NPs as a versatile platform for synergistic cancer therapy, combining PTT and PDT effects, while offering capabilities for biomedical imaging. Future research aims to further optimize these NPs and explore their clinical application, aiming toward enhanced therapeutic outcomes in cancer treatment.

普鲁士蓝掺铒羟基磷灰石纳米颗粒在光热光动力癌症治疗中的协同治疗作用。
本研究探讨了普鲁士蓝掺铒羟基磷灰石(PB-Er-HAp)生物陶瓷在光热治疗(PTT)和光动力治疗(PDT)癌症治疗中的协同治疗潜力,强调了它们在多模式治疗方法和成像中的作用。采用易共沉淀法将铒(Er)掺入不同浓度的纳米羟基磷灰石(HAp)中,合成了PB-Er-HAp纳米颗粒(NPs)。普鲁士蓝(PB)被功能化到这些NPs的表面上,导致最终粒径小于50 nm。利用MDA-MB-231乳腺癌细胞,体外评价合成的1.0 mol % PB-Er-HAp NPs的治疗效果。体外研究表明,PB-Er-HAp NPs在808 nm激光照射下表现出明显的PTT和PDT效应,分别通过产热和产生活性氧有效诱导癌细胞死亡。体外实验验证了NPs在MDA-MB-231乳腺癌细胞系中抑制肿瘤生长的能力。这项研究强调了PB-Er-HAp NPs作为协同癌症治疗的多功能平台的潜力,结合PTT和PDT效应,同时提供生物医学成像能力。未来的研究旨在进一步优化这些NPs并探索其临床应用,以提高癌症治疗的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信