Polydopamine Chelate Modified Separators for Lithium Metal Batteries with High-Rate Capability and Ultra-Long Cycling Life

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shixiang Liu, Qiang Liu, Pu Cheng, Xingkai Jia, Yinzhu Jiang, Xuan Zhang
{"title":"Polydopamine Chelate Modified Separators for Lithium Metal Batteries with High-Rate Capability and Ultra-Long Cycling Life","authors":"Shixiang Liu,&nbsp;Qiang Liu,&nbsp;Pu Cheng,&nbsp;Xingkai Jia,&nbsp;Yinzhu Jiang,&nbsp;Xuan Zhang","doi":"10.1002/advs.202501155","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries (LMBs) have gained significant attention because of their high theoretical energy density. However, under high-rate charge and discharge conditions, lithium metal anodes are susceptible to dendrite formation, compromising battery safety. Creating multifunctional separators offers an effective and cost-efficient solution for addressing fast charging and safety challenges in LMBs. This study proposes a method to prepare a functional separator by in situ growing a polydopamine copper chelate (PDA(Cu)) coating on a polypropylene (PP)/polyethylene (PE)/PP separator (PP/PE/PP@PDA(Cu)). The PDA(Cu) exhibits excellent electrolyte wetting properties and ion exclusion effects, contributing to high ionic conductivity (5.02 × 10<sup>−</sup>⁴ S cm<sup>−1</sup>) and high lithium-ion (Li<sup>+</sup>) transference number (0.776). Owing to its strong adhesion to the lithium metal anode, the coating significantly suppresses the formation of lithium dendrites. The Li||Li symmetric cell with a PP/PE/PP@PDA(Cu) separator demonstrates highly stable lithium plating-stripping cycles, lasting over 900 h. Additionally, the PDA(Cu) promotes the formation of a stable cathode electrolyte interphase (CEI) film on the LiFePO<sub>4</sub> cathode surface. The LiFePO<sub>4</sub>||Li cell with a PP/PE/PP@PDA(Cu) separator maintains 85.1% of its capacity after 6000 cycles at 10 C. This work paves a novel path for designing separators to enhance the fast-charging performance of LMBs and solve the challenges of lithium dendrite formation and long cycling life.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 25","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202501155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202501155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) have gained significant attention because of their high theoretical energy density. However, under high-rate charge and discharge conditions, lithium metal anodes are susceptible to dendrite formation, compromising battery safety. Creating multifunctional separators offers an effective and cost-efficient solution for addressing fast charging and safety challenges in LMBs. This study proposes a method to prepare a functional separator by in situ growing a polydopamine copper chelate (PDA(Cu)) coating on a polypropylene (PP)/polyethylene (PE)/PP separator (PP/PE/PP@PDA(Cu)). The PDA(Cu) exhibits excellent electrolyte wetting properties and ion exclusion effects, contributing to high ionic conductivity (5.02 × 10⁴ S cm−1) and high lithium-ion (Li+) transference number (0.776). Owing to its strong adhesion to the lithium metal anode, the coating significantly suppresses the formation of lithium dendrites. The Li||Li symmetric cell with a PP/PE/PP@PDA(Cu) separator demonstrates highly stable lithium plating-stripping cycles, lasting over 900 h. Additionally, the PDA(Cu) promotes the formation of a stable cathode electrolyte interphase (CEI) film on the LiFePO4 cathode surface. The LiFePO4||Li cell with a PP/PE/PP@PDA(Cu) separator maintains 85.1% of its capacity after 6000 cycles at 10 C. This work paves a novel path for designing separators to enhance the fast-charging performance of LMBs and solve the challenges of lithium dendrite formation and long cycling life.

Abstract Image

高倍率、超长循环寿命锂金属电池用聚多巴胺螯合改性隔膜
锂金属电池因其较高的理论能量密度而备受关注。然而,在高倍率充放电条件下,锂金属阳极容易形成枝晶,影响电池的安全性。创建多功能分离器为解决lmb中的快速充电和安全挑战提供了有效且经济高效的解决方案。本研究提出了在聚丙烯(PP)/聚乙烯(PE)/PP隔膜(PP/PE/PP@PDA(Cu))上原位生长聚多巴胺铜螯合物(PDA(Cu))涂层制备功能性隔膜的方法。PDA(Cu)具有优异的电解质润湿性能和离子排斥效应,具有高离子电导率(5.02 × 10-⁴S cm-1)和高锂离子(Li+)转移数(0.776)。由于其与锂金属阳极的强附着力,该涂层显著抑制了锂枝晶的形成。具有PP/PE/PP@PDA(Cu)分离器的Li||Li对称电池显示出高度稳定的锂镀剥离循环,持续时间超过900 h。此外,PDA(Cu)促进了LiFePO4阴极表面稳定的阴极电解质界面(CEI)膜的形成。使用PP/PE/PP@PDA(Cu)隔板的LiFePO4||锂电池在10℃下循环6000次后仍能保持85.1%的容量。本研究为设计隔膜提高lmb的快速充电性能,解决锂枝晶形成和长循环寿命的挑战开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信