Raúl Salgado-García, Orlando Díaz-Hernández, Andrés Castañeda-Jonapá, Gustavo Morales-Padrón, Alberto Estudillo, Thomas Buhse, José-Manuel Cruz
{"title":"Narrow escape for active camphor particles: facilitated escape and aging.","authors":"Raúl Salgado-García, Orlando Díaz-Hernández, Andrés Castañeda-Jonapá, Gustavo Morales-Padrón, Alberto Estudillo, Thomas Buhse, José-Manuel Cruz","doi":"10.1039/d4sm01483a","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we experimentally investigate the narrow escape problem using self-propelled camphor-infused discs, which have the possibility to escape from a bounded circular domain through an opening in the boundary. To analyze the statistical properties of the escape problem, we proposed two experimental protocols: first, a control setup within a closed circular domain where the disc encounters a target simulating an opening on the boundary, and a second setup where a real opening is placed on the boundary of the circular domain. These two setups allow us to compare how the statistical properties of escape differ between simulated (or fictitious) escape and the actual escape of camphor particles. Our results suggest that the presence of an actual opening in the wall alters the interactions between the particle and the boundary. Notably, we observe the counterintuitive phenomenon that introducing a real door in the boundary makes less accessible the escape from the domain. We further contrast and analyze several qualitative and quantitative properties of the system, including chiral flips, bouncing behavior, arrival angle distribution, as well as first passage time and exit time distributions, among other dynamical properties.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01483a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we experimentally investigate the narrow escape problem using self-propelled camphor-infused discs, which have the possibility to escape from a bounded circular domain through an opening in the boundary. To analyze the statistical properties of the escape problem, we proposed two experimental protocols: first, a control setup within a closed circular domain where the disc encounters a target simulating an opening on the boundary, and a second setup where a real opening is placed on the boundary of the circular domain. These two setups allow us to compare how the statistical properties of escape differ between simulated (or fictitious) escape and the actual escape of camphor particles. Our results suggest that the presence of an actual opening in the wall alters the interactions between the particle and the boundary. Notably, we observe the counterintuitive phenomenon that introducing a real door in the boundary makes less accessible the escape from the domain. We further contrast and analyze several qualitative and quantitative properties of the system, including chiral flips, bouncing behavior, arrival angle distribution, as well as first passage time and exit time distributions, among other dynamical properties.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.