Structural Design of Biodegradable Mg Gastrointestinal Anastomosis Staples for Corrosion and Mechanical Strength Analysis.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lin Mao, Xue Cai, Zhongxin Hu, Yujie Zhou, Zhiwei Dai, Yilong Chen, Hua Huang, Rui Zan, Chengli Song
{"title":"Structural Design of Biodegradable Mg Gastrointestinal Anastomosis Staples for Corrosion and Mechanical Strength Analysis.","authors":"Lin Mao, Xue Cai, Zhongxin Hu, Yujie Zhou, Zhiwei Dai, Yilong Chen, Hua Huang, Rui Zan, Chengli Song","doi":"10.1021/acsabm.5c00143","DOIUrl":null,"url":null,"abstract":"<p><p>Magnesium (Mg) and its alloys, as next-generation materials for anastomosis staples, offer promising advantages such as biodegradability, biocompatibility, and reduced risk of long-term complications compared to traditional titanium materials. However, the performance of biodegradable staples is highly dependent on their structure. In this study, a biodegradable high-purity (HP) Mg staple with an optimized structure intended for small intestine anastomosis was developed and evaluated in vitro. The designed staple, with a diameter of 0.3 mm, featured an interior angle of 100° and a height of 3.8 mm. This design exhibited a maximum effective stress of approximately 170 MPa and an effective strain of 1.63. The staple could maintain structural integrity without fracture after 7 days of in vitro corrosion testing and exhibited a relatively high burst pressure of approximately 54.70 ± 2.51 mmHg. These findings indicate that the newly designed HP Mg staple combines superior corrosion resistance and anastomosis strength, confirming its potential for clinical application.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium (Mg) and its alloys, as next-generation materials for anastomosis staples, offer promising advantages such as biodegradability, biocompatibility, and reduced risk of long-term complications compared to traditional titanium materials. However, the performance of biodegradable staples is highly dependent on their structure. In this study, a biodegradable high-purity (HP) Mg staple with an optimized structure intended for small intestine anastomosis was developed and evaluated in vitro. The designed staple, with a diameter of 0.3 mm, featured an interior angle of 100° and a height of 3.8 mm. This design exhibited a maximum effective stress of approximately 170 MPa and an effective strain of 1.63. The staple could maintain structural integrity without fracture after 7 days of in vitro corrosion testing and exhibited a relatively high burst pressure of approximately 54.70 ± 2.51 mmHg. These findings indicate that the newly designed HP Mg staple combines superior corrosion resistance and anastomosis strength, confirming its potential for clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信