Recent advances in non-noble metal-based electrocatalysts for hybrid water electrolysis systems

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-01-27 DOI:10.1002/cey2.679
Xiaoyu Zhang, Jiayi Wang, Kai Zong, Zhen Chen, Xin Yang, Lin Yang, Xin Wang, Zhongwei Chen
{"title":"Recent advances in non-noble metal-based electrocatalysts for hybrid water electrolysis systems","authors":"Xiaoyu Zhang,&nbsp;Jiayi Wang,&nbsp;Kai Zong,&nbsp;Zhen Chen,&nbsp;Xin Yang,&nbsp;Lin Yang,&nbsp;Xin Wang,&nbsp;Zhongwei Chen","doi":"10.1002/cey2.679","DOIUrl":null,"url":null,"abstract":"<p>The electrocatalytic water-splitting process is widely acknowledged as the most sustainable and environmentally friendly technology for hydrogen (H<sub>2</sub>) production. However, its energy efficiency is significantly constrained by the kinetically slow oxygen evolution reaction (OER) at the anode, which accounts for about 90% of the electrical energy consumption in the water-splitting process. A new strategy is urgently needed to reduce its energy consumption. In recent years, electrochemical oxidation of small molecules has been considered for replacement of OER for efficient H<sub>2</sub> production, due to its benign operational conditions, low theoretical thermodynamic potential, high conversion efficiency and selectivity, and environmental sustainability. Hybrid electrolysis systems, by integrating cathodic hydrogen evolution reaction with anodic oxidation of small molecules, have been introduced, which can generate high-purity H<sub>2</sub> and produce value-added products or pollutant degradation. In this review, we highlight the recent advancements and significant milestones achieved in hybrid water electrolysis systems. The focus is on non-noble metal electrocatalysts, reaction mechanisms, and the construction of electrolyzers. Additionally, we present the prevailing challenges and future perspectives pertinent to the evolution of this burgeoning technology.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 3","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.679","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic water-splitting process is widely acknowledged as the most sustainable and environmentally friendly technology for hydrogen (H2) production. However, its energy efficiency is significantly constrained by the kinetically slow oxygen evolution reaction (OER) at the anode, which accounts for about 90% of the electrical energy consumption in the water-splitting process. A new strategy is urgently needed to reduce its energy consumption. In recent years, electrochemical oxidation of small molecules has been considered for replacement of OER for efficient H2 production, due to its benign operational conditions, low theoretical thermodynamic potential, high conversion efficiency and selectivity, and environmental sustainability. Hybrid electrolysis systems, by integrating cathodic hydrogen evolution reaction with anodic oxidation of small molecules, have been introduced, which can generate high-purity H2 and produce value-added products or pollutant degradation. In this review, we highlight the recent advancements and significant milestones achieved in hybrid water electrolysis systems. The focus is on non-noble metal electrocatalysts, reaction mechanisms, and the construction of electrolyzers. Additionally, we present the prevailing challenges and future perspectives pertinent to the evolution of this burgeoning technology.

Abstract Image

杂化水电解系统非贵金属基电催化剂的研究进展
电催化水分解工艺被广泛认为是最可持续和最环保的氢(H2)生产技术。然而,其能量效率受到阳极上的动力学缓慢析氧反应(OER)的显著限制,该反应约占水分解过程中电能消耗的90%。迫切需要一个新的战略来减少能源消耗。近年来,小分子电化学氧化因其良好的操作条件、较低的理论热力学势、较高的转化效率和选择性以及环境可持续性而被认为是替代OER的高效制氢方法。介绍了一种将阴极析氢反应与小分子阳极氧化相结合的混合电解系统,该系统可以产生高纯度的氢气,并产生增值产品或降解污染物。在这篇综述中,我们重点介绍了混合水电解系统的最新进展和取得的重要里程碑。重点是非贵金属电催化剂、反应机理和电解槽结构。此外,我们还提出了与这一新兴技术的发展相关的主要挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信