Fish Evo-Devo: Moving Toward Species-Specific and Knowledge-Based Interactome

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Ehsan Pashay Ahi
{"title":"Fish Evo-Devo: Moving Toward Species-Specific and Knowledge-Based Interactome","authors":"Ehsan Pashay Ahi","doi":"10.1002/jez.b.23287","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A knowledge-based interactome maps interactions among proteins and molecules within a cell using experimental data, computational predictions, and literature mining. These interactomes are vital for understanding cellular functions, pathways, and the evolutionary conservation of protein interactions. They reveal how interactions regulate growth, differentiation, and development. Transitioning to functionally validated interactomes is crucial in evolutionary developmental biology (Evo-Devo), especially for non-model species, to uncover unique regulatory networks, evolutionary novelties, and reliable gene interaction models. This enhances our understanding of complex trait evolution across species. The European Evo-Devo 2024 conference in Helsinki hosted the first fish-specific Evo-Devo symposium, highlighting the growing interest in fish models. Advances in genome annotation, genome editing, imaging, and molecular screening are expanding fish Evo-Devo research. High-throughput molecular data have enabled the deduction of gene regulatory networks. The next steps involve creating species-specific interactomes, validating them functionally, and integrating additional molecular data to deepen the understanding of complex regulatory interactions in fish Evo-Devo. This short review aims to address the logical steps for this transition, as well as the necessities and limitations of this journey.</p></div>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"344 3","pages":"158-168"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23287","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A knowledge-based interactome maps interactions among proteins and molecules within a cell using experimental data, computational predictions, and literature mining. These interactomes are vital for understanding cellular functions, pathways, and the evolutionary conservation of protein interactions. They reveal how interactions regulate growth, differentiation, and development. Transitioning to functionally validated interactomes is crucial in evolutionary developmental biology (Evo-Devo), especially for non-model species, to uncover unique regulatory networks, evolutionary novelties, and reliable gene interaction models. This enhances our understanding of complex trait evolution across species. The European Evo-Devo 2024 conference in Helsinki hosted the first fish-specific Evo-Devo symposium, highlighting the growing interest in fish models. Advances in genome annotation, genome editing, imaging, and molecular screening are expanding fish Evo-Devo research. High-throughput molecular data have enabled the deduction of gene regulatory networks. The next steps involve creating species-specific interactomes, validating them functionally, and integrating additional molecular data to deepen the understanding of complex regulatory interactions in fish Evo-Devo. This short review aims to address the logical steps for this transition, as well as the necessities and limitations of this journey.

鱼类进化-进化:走向物种特异性和基于知识的相互作用
基于知识的相互作用组利用实验数据、计算预测和文献挖掘来绘制细胞内蛋白质和分子之间的相互作用。这些相互作用组对于理解细胞功能、途径和蛋白质相互作用的进化保护至关重要。它们揭示了相互作用如何调节生长、分化和发育。过渡到功能验证的相互作用组在进化发育生物学(Evo-Devo)中是至关重要的,特别是对于非模式物种,以发现独特的调控网络,进化的新颖性和可靠的基因相互作用模型。这增强了我们对物种间复杂性状进化的理解。在赫尔辛基举行的欧洲Evo-Devo 2024会议举办了第一次针对鱼类的Evo-Devo研讨会,突出了人们对鱼类模型日益增长的兴趣。基因组注释、基因组编辑、成像和分子筛选的进步正在扩大鱼类Evo-Devo研究。高通量分子数据使基因调控网络得以演绎。接下来的步骤包括创建特定物种的相互作用组,验证它们的功能,并整合额外的分子数据,以加深对鱼类Evo-Devo复杂调控相互作用的理解。这篇简短的综述旨在阐述这一转变的逻辑步骤,以及这一过程的必要性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信