{"title":"Dual-Doped Graphene Quantum Dots to Promote Long-Life Aqueous Zn-ion Batteries","authors":"Qianyi Ma, Anna Chen, Michael Fowler","doi":"10.1002/cey2.694","DOIUrl":null,"url":null,"abstract":"<p>As the next generation of advanced energy storage devices, aqueous Zn ions batteries (AZIBs) still face many challenges, especially dendrites on the Zn metal anode and side reactions. Although an interface modification strategy has been applied to optimize the stability of Zn metal anodes and has shown some improvement, they are still far from meeting the requirements for practical applications. There is a lack of consideration for designing a multifunctional solid electrolyte interphase (SEI) which modifies the solvation/desolvation structure of Zn ion at the interface of Zn metal anodes. Herein, we constructed an amphiphilic SEI with hydrophilic and hydrophobic properties: N, S dual-doped graphene quantum dots (GQDs). The N, S dual-doped GQDs have been synthesized using a one-step hydrothermal approach and were utilized for Zn anode surface modification. When regulating the solvation structure of the Zn ion interface by N, S dual-doped GQDs, it also promotes its desolvation kinetics, optimizes the interfacial behavior of Zn ion deposition to prohibit Zn dendrite growth, and suppresses side reactions in the Zn anode surface. The Zn|Zn symmetric cell has achieved a long cycle life of more than 800 h at 5 mA cm<sup>−2</sup>. The Zn|V<sub>2</sub>O<sub>5</sub> battery has achieved an excellent performance of more than 80% capacity retention after 1400 cycles at 1 A g<sup>−1</sup>. This provides another novel and cost-effective path for the SEI design of aqueous Zn-ion batteries.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 3","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.694","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the next generation of advanced energy storage devices, aqueous Zn ions batteries (AZIBs) still face many challenges, especially dendrites on the Zn metal anode and side reactions. Although an interface modification strategy has been applied to optimize the stability of Zn metal anodes and has shown some improvement, they are still far from meeting the requirements for practical applications. There is a lack of consideration for designing a multifunctional solid electrolyte interphase (SEI) which modifies the solvation/desolvation structure of Zn ion at the interface of Zn metal anodes. Herein, we constructed an amphiphilic SEI with hydrophilic and hydrophobic properties: N, S dual-doped graphene quantum dots (GQDs). The N, S dual-doped GQDs have been synthesized using a one-step hydrothermal approach and were utilized for Zn anode surface modification. When regulating the solvation structure of the Zn ion interface by N, S dual-doped GQDs, it also promotes its desolvation kinetics, optimizes the interfacial behavior of Zn ion deposition to prohibit Zn dendrite growth, and suppresses side reactions in the Zn anode surface. The Zn|Zn symmetric cell has achieved a long cycle life of more than 800 h at 5 mA cm−2. The Zn|V2O5 battery has achieved an excellent performance of more than 80% capacity retention after 1400 cycles at 1 A g−1. This provides another novel and cost-effective path for the SEI design of aqueous Zn-ion batteries.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.