Chiral Porous Frameworks for Enantioselective Separation and Asymmetric Catalysis

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bing Yan, Jin-Hui Song, Da-Long Zhang, Zong-Jie Guan, Yu Fang
{"title":"Chiral Porous Frameworks for Enantioselective Separation and Asymmetric Catalysis","authors":"Bing Yan,&nbsp;Jin-Hui Song,&nbsp;Da-Long Zhang,&nbsp;Zong-Jie Guan,&nbsp;Yu Fang","doi":"10.1002/cjoc.202401094","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The preparation and resolution of chiral molecules hold significant importance in scientific and industrial domains, such as drug development and manufacturing. In recent years, chiral porous frameworks have attracted increasing attention in asymmetric catalysis and enantiomer resolution due to their excellent performance. The metal-organic frameworks (MOFs), covalent organic frameworks (COFs), porous organic cages (POCs), and porous coordination cages (PCCs) are important representative of the porous framework family. Significantly, chirality can be easily introduced into these framework materials through simple bottom-up or post-modification methods, thereby promoting their applications related to chirality. In this review, we systematically summarize the synthesis strategies of four classes of chiral framework materials and their applications in asymmetric catalysis and enantiomeric resolution. Finally, we present some perspectives on the future development in chiral porous frameworks.</p>\n \n <p>\n </p>\n </section>\n \n <section>\n \n <h3> Key Scientists</h3>\n \n <p>Significant progress has been made in the development of chiral porous frameworks, primarily driven by the application of chiral molecules. This area of research has seen contributions from many distinguished scientists. A particularly important milestone was reached in 2000, when Kimoon Kim reported the first catalytic Chiral Metal-Organic Framework (CMOF). In 2001, Lin <i>et al</i>. reported a new generation of recyclable CMOF capable of chiral separation and heterogeneous catalysis. Simultaneously, researchers such as Cui and Duan have made substantial contributions, advancing the field considerably. Furthermore, notable developments have been made in the area of Chiral Covalent Organic Frameworks (CCOFs), with pioneering work by researchers like Jiang, Wang, and Cui. Meanwhile, some groups such as Su and Li have made significant strides in the chiral cages. These remarkable accomplishments have drawn considerable interest.</p>\n \n <p></p>\n </section>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"43 9","pages":"1078-1089"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202401094","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The preparation and resolution of chiral molecules hold significant importance in scientific and industrial domains, such as drug development and manufacturing. In recent years, chiral porous frameworks have attracted increasing attention in asymmetric catalysis and enantiomer resolution due to their excellent performance. The metal-organic frameworks (MOFs), covalent organic frameworks (COFs), porous organic cages (POCs), and porous coordination cages (PCCs) are important representative of the porous framework family. Significantly, chirality can be easily introduced into these framework materials through simple bottom-up or post-modification methods, thereby promoting their applications related to chirality. In this review, we systematically summarize the synthesis strategies of four classes of chiral framework materials and their applications in asymmetric catalysis and enantiomeric resolution. Finally, we present some perspectives on the future development in chiral porous frameworks.

Key Scientists

Significant progress has been made in the development of chiral porous frameworks, primarily driven by the application of chiral molecules. This area of research has seen contributions from many distinguished scientists. A particularly important milestone was reached in 2000, when Kimoon Kim reported the first catalytic Chiral Metal-Organic Framework (CMOF). In 2001, Lin et al. reported a new generation of recyclable CMOF capable of chiral separation and heterogeneous catalysis. Simultaneously, researchers such as Cui and Duan have made substantial contributions, advancing the field considerably. Furthermore, notable developments have been made in the area of Chiral Covalent Organic Frameworks (CCOFs), with pioneering work by researchers like Jiang, Wang, and Cui. Meanwhile, some groups such as Su and Li have made significant strides in the chiral cages. These remarkable accomplishments have drawn considerable interest.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信