{"title":"Plastic-Damage Thin-Layer Element Model for Seismic Failure Analysis of Concrete Dams","authors":"Yi-Xiang Qiu, Tian-Yu Zhou, Jin-Ting Wang, Jian-Wen Pan, Chu-Han Zhang","doi":"10.1002/nme.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Finite element methods based on the small deformation assumption have been widely used in the seismic response analysis of concrete dams. However, these methods are not effective in simulating the entire process of concrete dams transitioning from small deformation damage cracking to larger deformation collapse under extreme earthquake events. This paper proposes a plastic-damage thin-layer element model for analyzing large deformation failure of concrete dams under strong earthquakes. Using the equivalence principles, the smeared crack model is equivalently transformed into a layered separation format, which can consider both small and large deformations. Numerical verification through single thin-layer elements and Petersson's three-point bending beam demonstrates that the proposed model can comprehensively consider plastic deformation, damage, and stiffness changes in concrete. Furthermore, the seismic failure process of Koyna gravity dam is simulated using the proposed plastic-damage thin-layer element method. The results show that this model can realistically simulate the entire process from initial cracking to ultimate failure in concrete dams.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finite element methods based on the small deformation assumption have been widely used in the seismic response analysis of concrete dams. However, these methods are not effective in simulating the entire process of concrete dams transitioning from small deformation damage cracking to larger deformation collapse under extreme earthquake events. This paper proposes a plastic-damage thin-layer element model for analyzing large deformation failure of concrete dams under strong earthquakes. Using the equivalence principles, the smeared crack model is equivalently transformed into a layered separation format, which can consider both small and large deformations. Numerical verification through single thin-layer elements and Petersson's three-point bending beam demonstrates that the proposed model can comprehensively consider plastic deformation, damage, and stiffness changes in concrete. Furthermore, the seismic failure process of Koyna gravity dam is simulated using the proposed plastic-damage thin-layer element method. The results show that this model can realistically simulate the entire process from initial cracking to ultimate failure in concrete dams.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.