Deep Material Networks for Fiber Suspensions With Infinite Material Contrast

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Benedikt Sterr, Sebastian Gajek, Andrew Hrymak, Matti Schneider, Thomas Böhlke
{"title":"Deep Material Networks for Fiber Suspensions With Infinite Material Contrast","authors":"Benedikt Sterr,&nbsp;Sebastian Gajek,&nbsp;Andrew Hrymak,&nbsp;Matti Schneider,&nbsp;Thomas Böhlke","doi":"10.1002/nme.70014","DOIUrl":null,"url":null,"abstract":"<p>We extend the laminate based framework of direct deep material networks (DMNs) to treat suspensions of rigid fibers in a non-Newtonian solvent. To do so, we derive two-phase homogenization blocks that are capable of treating incompressible fluid phases and infinite material contrast. In particular, we leverage existing results for linear elastic laminates to identify closed form expressions for the linear homogenization functions of two-phase layered emulsions. To treat infinite material contrast, we rely on the repeated layering of two-phase layered emulsions in the form of coated layered materials. We derive necessary and sufficient conditions which ensure that the effective properties of coated layered materials with incompressible phases are non-singular, even if one of the phases is rigid. With the derived homogenization blocks and non-singularity conditions at hand, we present a novel DMN architecture, which we name the flexible DMN (FDMN) architecture. We build and train FDMNs to predict the effective stress response of shear-thinning fiber suspensions with a Cross-type matrix material. For 31 fiber orientation states, six load cases, and over a wide range of shear rates relevant to engineering processes, the FDMNs achieve validation errors below 4.31% when compared to direct numerical simulations with fast-Fourier-transform based computational techniques. Compared to a conventional machine learning approach introduced previously by the consortium of authors, FDMNs offer better accuracy at an increased computational cost for the considered material and flow scenarios.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the laminate based framework of direct deep material networks (DMNs) to treat suspensions of rigid fibers in a non-Newtonian solvent. To do so, we derive two-phase homogenization blocks that are capable of treating incompressible fluid phases and infinite material contrast. In particular, we leverage existing results for linear elastic laminates to identify closed form expressions for the linear homogenization functions of two-phase layered emulsions. To treat infinite material contrast, we rely on the repeated layering of two-phase layered emulsions in the form of coated layered materials. We derive necessary and sufficient conditions which ensure that the effective properties of coated layered materials with incompressible phases are non-singular, even if one of the phases is rigid. With the derived homogenization blocks and non-singularity conditions at hand, we present a novel DMN architecture, which we name the flexible DMN (FDMN) architecture. We build and train FDMNs to predict the effective stress response of shear-thinning fiber suspensions with a Cross-type matrix material. For 31 fiber orientation states, six load cases, and over a wide range of shear rates relevant to engineering processes, the FDMNs achieve validation errors below 4.31% when compared to direct numerical simulations with fast-Fourier-transform based computational techniques. Compared to a conventional machine learning approach introduced previously by the consortium of authors, FDMNs offer better accuracy at an increased computational cost for the considered material and flow scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信