{"title":"Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma (Adv. Mater. 13/2025)","authors":"Lihui Gu, Han Wu, Xu Li, Jiahao Xu, Mingda Wang, Chao Li, Lanqing Yao, Yongkang Diao, Yuchen Li, Fujie Chen, Feng Shen, Huijing Xiang, Yu Chen, Tian Yang","doi":"10.1002/adma.202570106","DOIUrl":null,"url":null,"abstract":"<p><b>X-Ray Induced Photodynamic Therapy</b></p><p>A novel biocompatible organic phosphorescent HOF nanoscintillator (BPT-HOF@PEG) was fabricated to enhance X-ray induced photodynamic therapy (X-PDT) for treating unresectable hepatocellular carcinoma (HCC). The precise tumor localization ability of stereotactic radiotherapy, along with the efficient X-ray energy absorption and transfer properties of BPT-HOF@PEG, provides significant therapeutic potential for HCC treatment, making this phosphorescent HOF-based X-PDT a promising alternative for patients with unresectable HCC. More details can be found in article number 2417001 by Feng Shen, Huijing Xiang, Yu Chen, Tian Yang, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 13","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202570106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202570106","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
X-Ray Induced Photodynamic Therapy
A novel biocompatible organic phosphorescent HOF nanoscintillator (BPT-HOF@PEG) was fabricated to enhance X-ray induced photodynamic therapy (X-PDT) for treating unresectable hepatocellular carcinoma (HCC). The precise tumor localization ability of stereotactic radiotherapy, along with the efficient X-ray energy absorption and transfer properties of BPT-HOF@PEG, provides significant therapeutic potential for HCC treatment, making this phosphorescent HOF-based X-PDT a promising alternative for patients with unresectable HCC. More details can be found in article number 2417001 by Feng Shen, Huijing Xiang, Yu Chen, Tian Yang, and co-workers.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.