Lignin-derived carbon fibers: A green path from biomass to advanced materials

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-01-09 DOI:10.1002/cey2.662
Li Yan, Hai Liu, Yanfan Yang, Lin Dai, Chuanling Si
{"title":"Lignin-derived carbon fibers: A green path from biomass to advanced materials","authors":"Li Yan,&nbsp;Hai Liu,&nbsp;Yanfan Yang,&nbsp;Lin Dai,&nbsp;Chuanling Si","doi":"10.1002/cey2.662","DOIUrl":null,"url":null,"abstract":"<p>Carbon fibers (CFs) with notable comprehensive properties, such as light weight, high specific strength, and stiffness, have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications. However, the commonly utilized precursors, such as polyacrylonitrile and pitch, exhibit a lack of environmental sustainability, and their costs are heavily reliant on fluctuating petroleum prices. To meet the substantial market demand for CFs, significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass. Lignin, the most abundant polyphenolic compound in nature, is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature, low cost, high carbon content, and aromatic structures. Nevertheless, the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products, which are diverse and heterogeneous in nature, restricting the industrialization of lignin-derived CFs. This review classifies fossil-derived and biomass-derived CFs, starting from the sources and chemical structures of raw lignin, and outlines the preparation methods linked to the performance of lignin-derived CFs. A comprehensive discussion is presented on the relationship between the structural characteristics of lignin, spinning preparation, and structure-morphology-property of lignin-derived CFs. Additionally, the potential applications of these materials in various domains, including energy, catalysis, composites, and other advanced products, are also described with the objective of spotlighting the unique merits of lignin. Finally, the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 3","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.662","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon fibers (CFs) with notable comprehensive properties, such as light weight, high specific strength, and stiffness, have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications. However, the commonly utilized precursors, such as polyacrylonitrile and pitch, exhibit a lack of environmental sustainability, and their costs are heavily reliant on fluctuating petroleum prices. To meet the substantial market demand for CFs, significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass. Lignin, the most abundant polyphenolic compound in nature, is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature, low cost, high carbon content, and aromatic structures. Nevertheless, the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products, which are diverse and heterogeneous in nature, restricting the industrialization of lignin-derived CFs. This review classifies fossil-derived and biomass-derived CFs, starting from the sources and chemical structures of raw lignin, and outlines the preparation methods linked to the performance of lignin-derived CFs. A comprehensive discussion is presented on the relationship between the structural characteristics of lignin, spinning preparation, and structure-morphology-property of lignin-derived CFs. Additionally, the potential applications of these materials in various domains, including energy, catalysis, composites, and other advanced products, are also described with the objective of spotlighting the unique merits of lignin. Finally, the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.

Abstract Image

木质素衍生碳纤维:一条从生物质到先进材料的绿色道路
碳纤维具有重量轻、比强度高、刚度大等显著的综合性能,其应用的多样性和先进性引起了学术界和工业界的广泛关注。然而,通常使用的前体,如聚丙烯腈和沥青,缺乏环境可持续性,其成本严重依赖于波动的石油价格。为了满足市场对碳水化合物的大量需求,已作出重大努力开发从生物质中提取的具有成本效益和可持续的碳水化合物。木质素是自然界中含量最丰富的多酚类化合物,具有可再生、低成本、高碳含量和芳香结构等特点,是一种很有前途的前体材料,非常适合用于碳燃料的生产。然而,目前大多数木质素原料来自制浆和生物精炼工业副产品,这些副产品性质多样且异质性,限制了木质素衍生碳燃料的工业化。本文从原料木质素的来源和化学结构出发,对化石来源和生物质来源的生物质燃料进行了分类,并概述了与木质素来源的生物质燃料性能相关的制备方法。全面讨论了木质素的结构特性、纺丝制备和木质素衍生碳纤维的结构-形态-性能之间的关系。此外,还描述了这些材料在各个领域的潜在应用,包括能源,催化,复合材料和其他先进产品,目的是突出木质素的独特优点。最后,提出了目前木质素衍生碳燃料面临的挑战和未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信