Phase Locking of 40 Hz Auditory Steady State Responses Is Modulated by Sensory Predictability and Linked to Cerebellar Myelination

IF 3.5 2区 医学 Q1 NEUROIMAGING
Kit Melissa Larsen, Kiran Thapaliya, Markus Barth, Chin-Husan Sophie Lin, Hartwig R. Siebner, Marta I. Garrido
{"title":"Phase Locking of 40 Hz Auditory Steady State Responses Is Modulated by Sensory Predictability and Linked to Cerebellar Myelination","authors":"Kit Melissa Larsen,&nbsp;Kiran Thapaliya,&nbsp;Markus Barth,&nbsp;Chin-Husan Sophie Lin,&nbsp;Hartwig R. Siebner,&nbsp;Marta I. Garrido","doi":"10.1002/hbm.70178","DOIUrl":null,"url":null,"abstract":"<p>40 Hz auditory steady-state responses (ASSR) can be evoked by brief auditory clicks delivered at 40 Hz. While the neuropharmacology behind the generation of ASSR is well examined, the link between ASSR and microstructural properties of the brain is unclear. Further, whether the 40 Hz ASSR can be manipulated through processes involving top-down control, such as prediction, is currently unknown. We recorded EEG in 50 neurotypical participants while they engaged in a 40 Hz auditory steady-state paradigm. We manipulated the predictability of the stimuli to test the modulatory effect of prediction on 40 Hz steady-state responses. Further, we acquired T1w and T2w structural MRI on the same individuals and used the T1/T2 ratio as a proxy to determine myelination content in gray matter. The phase locking of the 40 Hz ASSR was indeed modulated by prediction, suggesting that prediction violation directly affects phase locking to the 40 Hz ASSR. We found that the prediction violation of the phase locking at 40 Hz (gamma) was associated with the degree of gray matter myelination in the right cerebellum, such that greater myelin led to less desynchronization induced by prediction violations. We demonstrate that prediction violations modulate steady-state activity at 40 Hz and suggest that the efficiency of this process is promoted by greater cerebellar myelin. Our findings provide a structural-functional relationship for myelin and phase locking of auditory oscillatory activity. These results introduce a framework for investigating the interaction of predictive processes and ASSR in disorders where these processes are impaired, such as in psychosis.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70178","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

40 Hz auditory steady-state responses (ASSR) can be evoked by brief auditory clicks delivered at 40 Hz. While the neuropharmacology behind the generation of ASSR is well examined, the link between ASSR and microstructural properties of the brain is unclear. Further, whether the 40 Hz ASSR can be manipulated through processes involving top-down control, such as prediction, is currently unknown. We recorded EEG in 50 neurotypical participants while they engaged in a 40 Hz auditory steady-state paradigm. We manipulated the predictability of the stimuli to test the modulatory effect of prediction on 40 Hz steady-state responses. Further, we acquired T1w and T2w structural MRI on the same individuals and used the T1/T2 ratio as a proxy to determine myelination content in gray matter. The phase locking of the 40 Hz ASSR was indeed modulated by prediction, suggesting that prediction violation directly affects phase locking to the 40 Hz ASSR. We found that the prediction violation of the phase locking at 40 Hz (gamma) was associated with the degree of gray matter myelination in the right cerebellum, such that greater myelin led to less desynchronization induced by prediction violations. We demonstrate that prediction violations modulate steady-state activity at 40 Hz and suggest that the efficiency of this process is promoted by greater cerebellar myelin. Our findings provide a structural-functional relationship for myelin and phase locking of auditory oscillatory activity. These results introduce a framework for investigating the interaction of predictive processes and ASSR in disorders where these processes are impaired, such as in psychosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信