Sustainable Approaches for Pharmaceutical Pollutant Removal: Advances in Chitosan-Based Nanocomposite Adsorbents

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Hossein Dinarvand, Omid Moradi
{"title":"Sustainable Approaches for Pharmaceutical Pollutant Removal: Advances in Chitosan-Based Nanocomposite Adsorbents","authors":"Hossein Dinarvand,&nbsp;Omid Moradi","doi":"10.1002/slct.202405962","DOIUrl":null,"url":null,"abstract":"<p>The growing presence of pharmaceutical pollutants in aquatic environments poses significant threats to both human health and ecosystems. Despite their crucial role in healthcare, pharmaceuticals enter water systems through various sources, making them some of the most critical environmental contaminants. Traditional wastewater treatments, which are classified into physical, chemical, and biological techniques, often struggle to effectively remove pharmaceuticals. Among these methods, adsorption stands out as a reliable and versatile approach for removing organic pollutants and enhancing the efficiency of wastewater treatment processes. Biopolymers, particularly chitosan, are gaining attention due to their numerous advantages, including biocompatibility, biodegradability, affordability, high adsorption capability, non-toxicity, and availability from diverse natural sources. Chitosan, a hydrophilic biopolymer, can be chemically modified by incorporating various nanoparticles (e.g., metal oxides, carbon-based materials, and magnetic particles) to boost its adsorption efficiency. These advancements enable chitosan-based nanocomposites to effectively remove a range of pharmaceuticals, including antibiotics, analgesics, and hormones, from water. This review examines the latest developments in chitosan-based nanocomposite adsorbents, emphasizing their fundamental adsorption mechanisms, optimization conditions, kinetic behaviors, and isotherm models. These factors collectively determine the efficiency of nanocomposites in capturing pharmaceutical pollutants. Moreover, the review underscores the potential of these materials for environmental remediation, offering valuable insights into their application and future research directions. Ultimately, the aim of this review is to provide insight into chitosan-based nanocomposite adsorbents, which offer an innovative and effective solution to the challenge of pharmaceutical contamination in water. By addressing key challenges and utilizing advanced material designs, these adsorbents hold great promise for the sustainable and efficient removal of pollutants in environmental systems.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 13","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405962","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing presence of pharmaceutical pollutants in aquatic environments poses significant threats to both human health and ecosystems. Despite their crucial role in healthcare, pharmaceuticals enter water systems through various sources, making them some of the most critical environmental contaminants. Traditional wastewater treatments, which are classified into physical, chemical, and biological techniques, often struggle to effectively remove pharmaceuticals. Among these methods, adsorption stands out as a reliable and versatile approach for removing organic pollutants and enhancing the efficiency of wastewater treatment processes. Biopolymers, particularly chitosan, are gaining attention due to their numerous advantages, including biocompatibility, biodegradability, affordability, high adsorption capability, non-toxicity, and availability from diverse natural sources. Chitosan, a hydrophilic biopolymer, can be chemically modified by incorporating various nanoparticles (e.g., metal oxides, carbon-based materials, and magnetic particles) to boost its adsorption efficiency. These advancements enable chitosan-based nanocomposites to effectively remove a range of pharmaceuticals, including antibiotics, analgesics, and hormones, from water. This review examines the latest developments in chitosan-based nanocomposite adsorbents, emphasizing their fundamental adsorption mechanisms, optimization conditions, kinetic behaviors, and isotherm models. These factors collectively determine the efficiency of nanocomposites in capturing pharmaceutical pollutants. Moreover, the review underscores the potential of these materials for environmental remediation, offering valuable insights into their application and future research directions. Ultimately, the aim of this review is to provide insight into chitosan-based nanocomposite adsorbents, which offer an innovative and effective solution to the challenge of pharmaceutical contamination in water. By addressing key challenges and utilizing advanced material designs, these adsorbents hold great promise for the sustainable and efficient removal of pollutants in environmental systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信