Controls From Above and Below: Snow, Soil, and Steepness Drive Diverging Trends of Subsurface Water and Streamflow Dynamics

IF 3.2 3区 地球科学 Q1 Environmental Science
Devon Kerins, Abigail S. Knapp, Fiona S. Liu, Valerie Diana Smykalov, Matthew P. Berzonsky, Andrew Vierbicher, Kayalvizhi Sadayappan, Bryn Stewart, Elizabeth M. Andrews, Pamela L. Sullivan, Holly R. Barnard, Jan Seibert, Lauren E. McPhillips, Kamini Singha, Li Li
{"title":"Controls From Above and Below: Snow, Soil, and Steepness Drive Diverging Trends of Subsurface Water and Streamflow Dynamics","authors":"Devon Kerins,&nbsp;Abigail S. Knapp,&nbsp;Fiona S. Liu,&nbsp;Valerie Diana Smykalov,&nbsp;Matthew P. Berzonsky,&nbsp;Andrew Vierbicher,&nbsp;Kayalvizhi Sadayappan,&nbsp;Bryn Stewart,&nbsp;Elizabeth M. Andrews,&nbsp;Pamela L. Sullivan,&nbsp;Holly R. Barnard,&nbsp;Jan Seibert,&nbsp;Lauren E. McPhillips,&nbsp;Kamini Singha,&nbsp;Li Li","doi":"10.1002/hyp.70120","DOIUrl":null,"url":null,"abstract":"<p>The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data-limited but crucial for downstream water quantity and quality. Large-scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question: <i>What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams?</i> To answer this question, we used streamflow data and a widely-used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (&lt; 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (&gt; 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70120","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data-limited but crucial for downstream water quantity and quality. Large-scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question: What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams? To answer this question, we used streamflow data and a widely-used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (< 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (> 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信