Lingling Ye, Yangming Hu, Tao Xia, Thorne Lay, Yingquan Sang, Xiaofei Chen, Hiroo Kanamori, Fabrizio Romano, Stefano Lorito, Zhou Gui
{"title":"The 2021 MW 8.1 Kermadec Earthquake Sequence: Great Earthquake Rupture Along the Mantle/Slab Contact","authors":"Lingling Ye, Yangming Hu, Tao Xia, Thorne Lay, Yingquan Sang, Xiaofei Chen, Hiroo Kanamori, Fabrizio Romano, Stefano Lorito, Zhou Gui","doi":"10.1029/2024JB030926","DOIUrl":null,"url":null,"abstract":"<p>Most great earthquakes on subduction zone plate boundaries have large coseismic slip concentrated along the contact between the subducting slab and the upper plate crust. On 4 March 2021, a magnitude 7.4 foreshock struck 1 hr 47 min before a magnitude 8.1 earthquake along the northern Kermadec island arc. The mainshock is the largest well-documented underthrusting event along the ∼2,500-km long Tonga-Kermadec subduction zone. Using teleseismic, geodetic, and tsunami data, we find that all substantial coseismic slip in the mainshock is located along the mantle/slab interface at depths from 20 to 55 km, with the large foreshock nucleating near the down-dip edge. Smaller foreshocks and most aftershocks are located up-dip of the mainshock, where substantial prior moderate thrust earthquake activity had occurred. The upper plate crust is ∼17 km thick in northern Kermadec with only moderate-size events along the crust/slab interface. A 1976 sequence with <i>M</i><sub><i>W</i></sub> values of 7.9, 7.8, 7.3, 7.0, and 7.0 that spanned the 2021 rupture zone also involved deep megathrust rupture along the mantle/slab contact, but distinct waveforms exclude repeating ruptures. Variable waveforms for eight deep M6.9+ thrusting earthquakes since 1990 suggest discrete slip patches distributed throughout the region. The ∼300-km long plate boundary in northern Kermadec is the only documented subduction zone region where the largest modeled interplate earthquakes have ruptured along the mantle/slab interface, suggesting that local frictional properties of the putatively hydrated mantle wedge may involve a dense distribution of Antigorite-rich patches with high slip rate velocity weakening behavior in this locale.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030926","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Most great earthquakes on subduction zone plate boundaries have large coseismic slip concentrated along the contact between the subducting slab and the upper plate crust. On 4 March 2021, a magnitude 7.4 foreshock struck 1 hr 47 min before a magnitude 8.1 earthquake along the northern Kermadec island arc. The mainshock is the largest well-documented underthrusting event along the ∼2,500-km long Tonga-Kermadec subduction zone. Using teleseismic, geodetic, and tsunami data, we find that all substantial coseismic slip in the mainshock is located along the mantle/slab interface at depths from 20 to 55 km, with the large foreshock nucleating near the down-dip edge. Smaller foreshocks and most aftershocks are located up-dip of the mainshock, where substantial prior moderate thrust earthquake activity had occurred. The upper plate crust is ∼17 km thick in northern Kermadec with only moderate-size events along the crust/slab interface. A 1976 sequence with MW values of 7.9, 7.8, 7.3, 7.0, and 7.0 that spanned the 2021 rupture zone also involved deep megathrust rupture along the mantle/slab contact, but distinct waveforms exclude repeating ruptures. Variable waveforms for eight deep M6.9+ thrusting earthquakes since 1990 suggest discrete slip patches distributed throughout the region. The ∼300-km long plate boundary in northern Kermadec is the only documented subduction zone region where the largest modeled interplate earthquakes have ruptured along the mantle/slab interface, suggesting that local frictional properties of the putatively hydrated mantle wedge may involve a dense distribution of Antigorite-rich patches with high slip rate velocity weakening behavior in this locale.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.