Synaptic Function and Dysfunction: New Frontiers in CNS Disorders

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Feyza Sule Aslan, Mahmut Berat Akdag, Zuleyha Doganyigit, Aslı Okan, Mohd. Farooq Shaikh, Enes Akyuz
{"title":"Synaptic Function and Dysfunction: New Frontiers in CNS Disorders","authors":"Feyza Sule Aslan,&nbsp;Mahmut Berat Akdag,&nbsp;Zuleyha Doganyigit,&nbsp;Aslı Okan,&nbsp;Mohd. Farooq Shaikh,&nbsp;Enes Akyuz","doi":"10.1002/jnr.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Central nervous system (CNS) disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and migraines, rank among the most prevalent and concerning conditions worldwide. Despite ongoing research, the pathophysiology of these disorders remains incompletely understood, primarily due to their complex etiology. Current pharmacological treatments mainly focus on alleviating symptoms rather than addressing the underlying causes of these diseases. CNS disorders are marked by impairments in neurocognitive and neuromuscular functions, and cognitive processes like learning and memory. This deterioration not only impacts the quality of life of affected individuals but also places a significant burden on their families. Neuroplasticity is a key property of the nervous system that enables brain repair and functional recovery. However, in CNS disorders, neuroplasticity is often compromised. Neuroplasticity, which is regulated by gene expression, is also modulated by environmental factors and epigenetic mechanisms, thereby reshaping neuronal networks in response to various biological and environmental stimuli and brain function. Importantly, neuroplasticity plays a critical role in repairing the brain, especially in the context of neurodegenerative diseases, where damaged neurons can reorganize and re-establish lost functions. Targeting neuroplasticity mechanisms holds significant potential for developing therapeutic interventions to improve treatment outcomes and prevent CNS disorders. A deeper understanding of neuroplasticity in neurological diseases could open new avenues for enhancing patient quality of life. This review aims to provide a comprehensive overview of synaptic function and the neuroplasticity mechanisms that are disrupted in neurological disorders.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Central nervous system (CNS) disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and migraines, rank among the most prevalent and concerning conditions worldwide. Despite ongoing research, the pathophysiology of these disorders remains incompletely understood, primarily due to their complex etiology. Current pharmacological treatments mainly focus on alleviating symptoms rather than addressing the underlying causes of these diseases. CNS disorders are marked by impairments in neurocognitive and neuromuscular functions, and cognitive processes like learning and memory. This deterioration not only impacts the quality of life of affected individuals but also places a significant burden on their families. Neuroplasticity is a key property of the nervous system that enables brain repair and functional recovery. However, in CNS disorders, neuroplasticity is often compromised. Neuroplasticity, which is regulated by gene expression, is also modulated by environmental factors and epigenetic mechanisms, thereby reshaping neuronal networks in response to various biological and environmental stimuli and brain function. Importantly, neuroplasticity plays a critical role in repairing the brain, especially in the context of neurodegenerative diseases, where damaged neurons can reorganize and re-establish lost functions. Targeting neuroplasticity mechanisms holds significant potential for developing therapeutic interventions to improve treatment outcomes and prevent CNS disorders. A deeper understanding of neuroplasticity in neurological diseases could open new avenues for enhancing patient quality of life. This review aims to provide a comprehensive overview of synaptic function and the neuroplasticity mechanisms that are disrupted in neurological disorders.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Research
Journal of Neuroscience Research 医学-神经科学
CiteScore
9.50
自引率
2.40%
发文量
145
审稿时长
1 months
期刊介绍: The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology. The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信