Juan J. Ferreira, Lindsey N. Kent, Ronald McCarthy, Alice Butler, Xiaofeng Ma, Nikita Peramsetty, Chinwendu Amazu, Alexander Zhang, Grace C. Whitter, Ethan Li, Sarah K. England, Celia M. Santi
{"title":"SLO2.1/NALCN Functional Complex Activity in Mouse Myometrial Smooth Muscle Cells During Pregnancy","authors":"Juan J. Ferreira, Lindsey N. Kent, Ronald McCarthy, Alice Butler, Xiaofeng Ma, Nikita Peramsetty, Chinwendu Amazu, Alexander Zhang, Grace C. Whitter, Ethan Li, Sarah K. England, Celia M. Santi","doi":"10.1002/jcp.70024","DOIUrl":null,"url":null,"abstract":"<p>At the end of pregnancy, the uterus transitions from a quiescent to a highly contractile state. This is partly due to the depolarization of the resting membrane potential in uterine (myometrial) smooth muscle cells (MSMCs). In human MSMCs, the membrane potential is regulated by a functional complex between the sodium (Na<sup>+</sup>)-activated potassium (K<sup>+</sup>) channel SLO2.1 and the Na<sup>+</sup> leak channel nonselective (NALCN). Na<sup>+</sup> entering through NALCN activates SLO2.1, leading to K<sup>+</sup> efflux, membrane hyperpolarization (cells become more negative inside), and reduced contractility. Decreased SLO2.1/NALCN activity results in reduced K<sup>+</sup> efflux, leading to membrane depolarization, Ca<sup>2+</sup> influx via voltage-dependent calcium channels, and increased MSMC contractility. However, all of these data are from MSMCs isolated from women at term, so the role of the SLO2.1/NALCN complex early in pregnancy was speculative. To address this question here, we examined the role of the SLO2.1/NALCN complex in regulating mouse MSMC membrane potential across pregnancy. We report that <i>Slo2.1</i> and <i>Nalcn</i> are more highly expressed in MSMCs from nonpregnant and early pregnant mice than in those from late-pregnant mice. Functional studies revealed that SLO2.1 channels mediate a significant portion of the K<sup>+</sup> current in mouse MSMCs, particularly in cells from nonpregnant and early pregnant mice. Activation of SLO2.1 by Na<sup>+</sup> influx through NALCN led to membrane hyperpolarization in MSMCs from early pregnancy but not in MSMCs from later pregnancy. Moreover, the NALCN/SLO2.1 complex regulates intracellular Ca<sup>2+</sup> responses more in MSMCs from nonpregnant and early pregnancy mice than in MSMCs from late pregnancy. Together, these findings reveal that the SLO2.1/NALCN functional complex is conserved between mice and humans and functions throughout pregnancy. This study could open avenues for targeted pharmacological interventions for pregnancy-related complications.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.70024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At the end of pregnancy, the uterus transitions from a quiescent to a highly contractile state. This is partly due to the depolarization of the resting membrane potential in uterine (myometrial) smooth muscle cells (MSMCs). In human MSMCs, the membrane potential is regulated by a functional complex between the sodium (Na+)-activated potassium (K+) channel SLO2.1 and the Na+ leak channel nonselective (NALCN). Na+ entering through NALCN activates SLO2.1, leading to K+ efflux, membrane hyperpolarization (cells become more negative inside), and reduced contractility. Decreased SLO2.1/NALCN activity results in reduced K+ efflux, leading to membrane depolarization, Ca2+ influx via voltage-dependent calcium channels, and increased MSMC contractility. However, all of these data are from MSMCs isolated from women at term, so the role of the SLO2.1/NALCN complex early in pregnancy was speculative. To address this question here, we examined the role of the SLO2.1/NALCN complex in regulating mouse MSMC membrane potential across pregnancy. We report that Slo2.1 and Nalcn are more highly expressed in MSMCs from nonpregnant and early pregnant mice than in those from late-pregnant mice. Functional studies revealed that SLO2.1 channels mediate a significant portion of the K+ current in mouse MSMCs, particularly in cells from nonpregnant and early pregnant mice. Activation of SLO2.1 by Na+ influx through NALCN led to membrane hyperpolarization in MSMCs from early pregnancy but not in MSMCs from later pregnancy. Moreover, the NALCN/SLO2.1 complex regulates intracellular Ca2+ responses more in MSMCs from nonpregnant and early pregnancy mice than in MSMCs from late pregnancy. Together, these findings reveal that the SLO2.1/NALCN functional complex is conserved between mice and humans and functions throughout pregnancy. This study could open avenues for targeted pharmacological interventions for pregnancy-related complications.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.