The Rise and Fall of Marpha Lake, a Late Quaternary Dammed Lake in the Himalayan Rain-Shadow With Implications to Landscape Evolution and Sediment Dynamics

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
P. Chahal, A. Matmon, N. Porat, K. N. Paudayal, Y. Goldsmith
{"title":"The Rise and Fall of Marpha Lake, a Late Quaternary Dammed Lake in the Himalayan Rain-Shadow With Implications to Landscape Evolution and Sediment Dynamics","authors":"P. Chahal,&nbsp;A. Matmon,&nbsp;N. Porat,&nbsp;K. N. Paudayal,&nbsp;Y. Goldsmith","doi":"10.1029/2024JF007959","DOIUrl":null,"url":null,"abstract":"<p>Understanding landscape evolution history and sedimentary dynamics in high mountainous regions is tampered by rapid erosion of the sedimentary archives. Naturally dammed lakes provide unique snapshots of these processes and enable evaluating these processes under climatic conditions different from the present. Marpha Lake, in the Himalayan rain-shadow of the upper Kali Gandaki, central Nepal, with its ∼450 m thick lacustrine sequence provides a rare opportunity to study these processes. Optically Stimulated Luminescence (OSL) of quartz and feldspars was used to date the full sequence of filling, breaching and sediment evacuation of the lake. The results show that the lake initiated at ∼120 ka and sediment accumulated until ∼80 ka, corresponding to the intense monsoon period of Marine Isotope Stage (MIS) 5. The calculated minimum catchment erosion rate during the lake filling is typical of modern erosion rates of the Himalayan rain shadow (∼150 mm/ka). The lake was breached at ∼30 ka and the majority of sediments were evacuated within 10 kyr. Between 80 and 30 ka, there was little sedimentation, corresponding to the Last Glacial period (MIS 2–4) associated with weaker Indian monsoon and possible ice coverage of the lake's drainage basin down to the elevation of the lake. Breaching of the dam may have been the result of ice pressure from the lake and/or ice build-up in the pores within the dam. Thus, the sediments of Marpha Lake provide a fascinating archive for understanding how the interplay between mass movement and climate shaped the Himalayan rain shadow morphology during the Late Quaternary.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007959","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007959","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding landscape evolution history and sedimentary dynamics in high mountainous regions is tampered by rapid erosion of the sedimentary archives. Naturally dammed lakes provide unique snapshots of these processes and enable evaluating these processes under climatic conditions different from the present. Marpha Lake, in the Himalayan rain-shadow of the upper Kali Gandaki, central Nepal, with its ∼450 m thick lacustrine sequence provides a rare opportunity to study these processes. Optically Stimulated Luminescence (OSL) of quartz and feldspars was used to date the full sequence of filling, breaching and sediment evacuation of the lake. The results show that the lake initiated at ∼120 ka and sediment accumulated until ∼80 ka, corresponding to the intense monsoon period of Marine Isotope Stage (MIS) 5. The calculated minimum catchment erosion rate during the lake filling is typical of modern erosion rates of the Himalayan rain shadow (∼150 mm/ka). The lake was breached at ∼30 ka and the majority of sediments were evacuated within 10 kyr. Between 80 and 30 ka, there was little sedimentation, corresponding to the Last Glacial period (MIS 2–4) associated with weaker Indian monsoon and possible ice coverage of the lake's drainage basin down to the elevation of the lake. Breaching of the dam may have been the result of ice pressure from the lake and/or ice build-up in the pores within the dam. Thus, the sediments of Marpha Lake provide a fascinating archive for understanding how the interplay between mass movement and climate shaped the Himalayan rain shadow morphology during the Late Quaternary.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信