Simultaneous Electrochemical Detection of DA and 5-HT Using Pt-Doped-rGO Nanocomposite

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Hashim Elshafie, Abdulrahman Saad Alqahtani, Azath Mubarakali, M. Venkatesh, P. Parthasarathy
{"title":"Simultaneous Electrochemical Detection of DA and 5-HT Using Pt-Doped-rGO Nanocomposite","authors":"Hashim Elshafie,&nbsp;Abdulrahman Saad Alqahtani,&nbsp;Azath Mubarakali,&nbsp;M. Venkatesh,&nbsp;P. Parthasarathy","doi":"10.1007/s10876-025-02796-0","DOIUrl":null,"url":null,"abstract":"<div><p>An electrochemical sensor with excellent sensitivity has been developed for the continuous and selective identification of (DA) dopamine and (5-HT) serotonin via a platinum (pt) - doped reduced graphene oxide nanocomposite (Pt-doped rGO). The sensor utilizes the synergistic properties of its components: the increased surface area and electrical conductivity of rGO, the improved electron transfers due to platinum doping, and the structural benefits of the composite for efficient neurotransmitter detection. The Pt-doped rGO nanocomposite is produced by directly oxidizing graphite to generate graphene oxide (GO), subsequently reducing and functionalizing GO with platinum nanoparticles. Electrochemical characterization using differential pulse voltammetry (DPV) demonstrated clear separation of oxidation peaks for DA and 5-HT, allowing precise multiplexed detection. The sensor demonstrated superior electrocatalytic activity, selectivity, and no interference from ascorbic acid (AA), frequently found in electrochemical biosensing. The detection limits were 0.012 µM for both dopamine (DA) and serotonin (5-HT). The analysis of actual samples in human urine and serum validated the sensor’s practicality and reproducibility. The Pt-doped rGO composite effectively tackles significant issues in electrochemical biosensing, such as overlapping redox potentials and interference from intricate biological matrices, rendering it a promising platform for the highly sensitive and selective detection of neurotransmitters.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02796-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

An electrochemical sensor with excellent sensitivity has been developed for the continuous and selective identification of (DA) dopamine and (5-HT) serotonin via a platinum (pt) - doped reduced graphene oxide nanocomposite (Pt-doped rGO). The sensor utilizes the synergistic properties of its components: the increased surface area and electrical conductivity of rGO, the improved electron transfers due to platinum doping, and the structural benefits of the composite for efficient neurotransmitter detection. The Pt-doped rGO nanocomposite is produced by directly oxidizing graphite to generate graphene oxide (GO), subsequently reducing and functionalizing GO with platinum nanoparticles. Electrochemical characterization using differential pulse voltammetry (DPV) demonstrated clear separation of oxidation peaks for DA and 5-HT, allowing precise multiplexed detection. The sensor demonstrated superior electrocatalytic activity, selectivity, and no interference from ascorbic acid (AA), frequently found in electrochemical biosensing. The detection limits were 0.012 µM for both dopamine (DA) and serotonin (5-HT). The analysis of actual samples in human urine and serum validated the sensor’s practicality and reproducibility. The Pt-doped rGO composite effectively tackles significant issues in electrochemical biosensing, such as overlapping redox potentials and interference from intricate biological matrices, rendering it a promising platform for the highly sensitive and selective detection of neurotransmitters.

pt掺杂氧化石墨烯纳米复合材料同时电化学检测DA和5-HT
通过铂掺杂还原氧化石墨烯纳米复合材料(pt掺杂rGO),开发了一种具有优异灵敏度的电化学传感器,用于连续和选择性地识别(DA)多巴胺和(5-HT)血清素。该传感器利用了其组件的协同特性:氧化石墨烯增加的表面积和导电性,由于铂掺杂而改善的电子转移,以及复合材料有效检测神经递质的结构优势。铂掺杂氧化石墨烯纳米复合材料是通过直接氧化石墨烯生成氧化石墨烯(GO),然后用铂纳米颗粒还原和功能化GO而制备的。利用差分脉冲伏安法(DPV)进行电化学表征表明,DA和5-HT的氧化峰可以清晰分离,从而实现精确的多路检测。该传感器表现出优异的电催化活性、选择性和不受抗坏血酸(AA)的干扰,这是电化学生物传感中经常发现的。多巴胺(DA)和血清素(5-HT)的检出限均为0.012µM。通过对人体尿液和血清实际样品的分析,验证了传感器的实用性和可重复性。pt掺杂氧化石墨烯复合材料有效地解决了电化学生物传感中的重要问题,如重叠氧化还原电位和复杂生物基质的干扰,使其成为高灵敏度和选择性检测神经递质的有希望的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信