Cumulants and Large Deviations for the Linear Statistics of the One-Dimensional Trapped Riesz Gas

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Pierre Le Doussal, Grégory Schehr
{"title":"Cumulants and Large Deviations for the Linear Statistics of the One-Dimensional Trapped Riesz Gas","authors":"Pierre Le Doussal,&nbsp;Grégory Schehr","doi":"10.1007/s10955-025-03429-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the classical trapped Riesz gas, i.e., <i>N</i> particles at positions <span>\\(x_i\\)</span> in one dimension with a repulsive power law interacting potential <span>\\(\\propto 1/|x_i-x_j|^{k}\\)</span>, with <span>\\(k&gt;-2\\)</span>, in an external confining potential of the form <span>\\(V(x) \\sim |x|^n\\)</span>. We focus on the equilibrium Gibbs state of the gas, for which the density has a finite support <span>\\([-\\ell _0/2,\\ell _0/2]\\)</span>. We study the fluctuations of the linear statistics <span>\\({{\\mathcal {L}}}_N = \\sum _{i=1}^N f(x_i)\\)</span> in the large <i>N</i> limit for smooth functions <i>f</i>(<i>x</i>). We obtain analytic formulae for the cumulants of <span>\\({{\\mathcal {L}}}_N\\)</span> for general <span>\\(k&gt;-2\\)</span>. For long range interactions, i.e. <span>\\(k&lt;1\\)</span>, which include the log-gas (<span>\\(k \\rightarrow 0\\)</span>) and the Coulomb gas (<span>\\(k =-1\\)</span>) these are obtained for monomials <span>\\(f(x)= |x|^m\\)</span>. For short range interactions, i.e. <span>\\(k&gt;1\\)</span>, which include the Calogero–Moser model, i.e. <span>\\(k=2\\)</span>, we compute the third cumulant of <span>\\({{\\mathcal {L}}}_N\\)</span> for general <i>f</i>(<i>x</i>) and arbitrary cumulants for monomials <span>\\(f(x)= |x|^m\\)</span>. We also obtain the large deviation form of the probability distribution of <span>\\({{\\mathcal {L}}}_N\\)</span>, which exhibits an “evaporation transition” where the fluctuation of <span>\\({{\\mathcal {L}}}_N\\)</span> is dominated by the one of the largest <span>\\(x_i\\)</span>. In addition, in the short range case, we extend our results to a (non-smooth) indicator function <i>f</i>(<i>x</i>), obtaining thereby the higher order cumulants for the full counting statistics of the number of particles in an interval <span>\\([-L/2,L/2]\\)</span>. We show in particular that they exhibit an interesting scaling form as <i>L</i>/2 approaches the edge of the gas <span>\\(L/\\ell _0 \\rightarrow 1\\)</span>, which we relate to the large deviations of the emptiness probability of the complementary interval on the real line.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03429-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the classical trapped Riesz gas, i.e., N particles at positions \(x_i\) in one dimension with a repulsive power law interacting potential \(\propto 1/|x_i-x_j|^{k}\), with \(k>-2\), in an external confining potential of the form \(V(x) \sim |x|^n\). We focus on the equilibrium Gibbs state of the gas, for which the density has a finite support \([-\ell _0/2,\ell _0/2]\). We study the fluctuations of the linear statistics \({{\mathcal {L}}}_N = \sum _{i=1}^N f(x_i)\) in the large N limit for smooth functions f(x). We obtain analytic formulae for the cumulants of \({{\mathcal {L}}}_N\) for general \(k>-2\). For long range interactions, i.e. \(k<1\), which include the log-gas (\(k \rightarrow 0\)) and the Coulomb gas (\(k =-1\)) these are obtained for monomials \(f(x)= |x|^m\). For short range interactions, i.e. \(k>1\), which include the Calogero–Moser model, i.e. \(k=2\), we compute the third cumulant of \({{\mathcal {L}}}_N\) for general f(x) and arbitrary cumulants for monomials \(f(x)= |x|^m\). We also obtain the large deviation form of the probability distribution of \({{\mathcal {L}}}_N\), which exhibits an “evaporation transition” where the fluctuation of \({{\mathcal {L}}}_N\) is dominated by the one of the largest \(x_i\). In addition, in the short range case, we extend our results to a (non-smooth) indicator function f(x), obtaining thereby the higher order cumulants for the full counting statistics of the number of particles in an interval \([-L/2,L/2]\). We show in particular that they exhibit an interesting scaling form as L/2 approaches the edge of the gas \(L/\ell _0 \rightarrow 1\), which we relate to the large deviations of the emptiness probability of the complementary interval on the real line.

一维圈闭Riesz气体线性统计的累积量和大偏差
我们考虑经典的困住的Riesz气体,即N个粒子在一维中\(x_i\)的位置具有排斥幂律相互作用势\(\propto 1/|x_i-x_j|^{k}\),与\(k>-2\),在形式为\(V(x) \sim |x|^n\)的外部限制势。我们关注气体的平衡吉布斯状态,对于这个状态,密度有一个有限的支持\([-\ell _0/2,\ell _0/2]\)。研究了光滑函数f(x)在大N极限下线性统计量\({{\mathcal {L}}}_N = \sum _{i=1}^N f(x_i)\)的涨落。对于一般的\(k>-2\),我们得到了\({{\mathcal {L}}}_N\)累积量的解析公式。对于长距离相互作用,例如\(k<1\),其中包括对数气体(\(k \rightarrow 0\))和库仑气体(\(k =-1\)),这些是单项\(f(x)= |x|^m\)得到的。对于短程相互作用,即\(k>1\),其中包括Calogero-Moser模型,即\(k=2\),我们计算一般f(x)的第三累积量\({{\mathcal {L}}}_N\)和单项的任意累积量\(f(x)= |x|^m\)。我们还得到了\({{\mathcal {L}}}_N\)概率分布的大偏差形式,它表现为“蒸发过渡”,其中\({{\mathcal {L}}}_N\)的波动由最大的一个\(x_i\)主导。此外,在短期情况下,我们将结果推广到(非光滑)指示函数f(x),从而获得了区间\([-L/2,L/2]\)中粒子数的全计数统计量的高阶累积量。我们特别指出,当L/2接近气体的边缘\(L/\ell _0 \rightarrow 1\)时,它们表现出一种有趣的缩放形式,我们将其与实线上互补区间的空性概率的大偏差联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信