Yunasfi, Annisa Intan Fhadilla, Ramlan, Mashadi, Ade Mulyawan, Didin S Winatapura, Jan Setiawan, Wisnu Ari Adi, MP Izaak, YE Gunanto
{"title":"Effect of nickel doping in cobalt titanate on structural and magnetic properties for microwave-absorbing application","authors":"Yunasfi, Annisa Intan Fhadilla, Ramlan, Mashadi, Ade Mulyawan, Didin S Winatapura, Jan Setiawan, Wisnu Ari Adi, MP Izaak, YE Gunanto","doi":"10.1007/s12034-025-03407-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pure and Ni-doped CoTiO<sub>3</sub> powders with a nominal composition of the Co<sub>(1–<i>x</i>)</sub>Ni<sub><i>x</i></sub>TiO<sub>3</sub> (with <i>x</i> = 0.00; 0.25; 0.50 and 0.75) were prepared by mechanical milling using solid-state reaction from NiO, Co<sub>3</sub>O<sub>4</sub> and TiO<sub>2</sub> powders as raw materials in mole ratio. The effect of Ni<sup>2+</sup> doping on structural, particle morphology, elemental composition, magnetic properties and microwaves absorption characteristics of Co<sub>(1–<i>x</i>)</sub>Ni<sub><i>x</i></sub>TiO<sub>3</sub> was investigated by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, Raman spectroscopy, vibration samples magnetometer and vector network analyzer, respectively. It was found that all fabricated samples show in single phase with hexagonal structure. However, with the presence of Ni<sup>2+</sup> ions dopant, the particle size and saturation magnetization (<i>M</i><sub>s</sub>) values decrease, whereas the microwave absorption capability increases.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-025-03407-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pure and Ni-doped CoTiO3 powders with a nominal composition of the Co(1–x)NixTiO3 (with x = 0.00; 0.25; 0.50 and 0.75) were prepared by mechanical milling using solid-state reaction from NiO, Co3O4 and TiO2 powders as raw materials in mole ratio. The effect of Ni2+ doping on structural, particle morphology, elemental composition, magnetic properties and microwaves absorption characteristics of Co(1–x)NixTiO3 was investigated by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, Raman spectroscopy, vibration samples magnetometer and vector network analyzer, respectively. It was found that all fabricated samples show in single phase with hexagonal structure. However, with the presence of Ni2+ ions dopant, the particle size and saturation magnetization (Ms) values decrease, whereas the microwave absorption capability increases.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.