The Local Poincaré Inequality of Stochastic Dynamic and Application to the Ising Model

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Kai-yuan Cui, Fu-zhou Gong
{"title":"The Local Poincaré Inequality of Stochastic Dynamic and Application to the Ising Model","authors":"Kai-yuan Cui,&nbsp;Fu-zhou Gong","doi":"10.1007/s10255-025-0001-1","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the idea of stochastic quantization proposed by Parisi and Wu, we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation. From a probabilistic perspective, the renormalization procedure can be characterized by a discrete-time Markov chain. Therefore, we focus on this stochastic dynamic, and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions. Finally, we choose an appropriate coupling relationship between parameters <i>K</i> and <i>T</i> to obtain the Poincaré inequality of two point functions for the limiting system. Our method extends the classic Bakry-Émery criterion, and the results provide a new perspective to characterize the renormalization procedure.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"41 2","pages":"305 - 336"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-025-0001-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the idea of stochastic quantization proposed by Parisi and Wu, we reconstruct the transition probability function that has a central role in the renormalization group using a stochastic differential equation. From a probabilistic perspective, the renormalization procedure can be characterized by a discrete-time Markov chain. Therefore, we focus on this stochastic dynamic, and establish the local Poincaré inequality by calculating the Bakry-Émery curvature for two point functions. Finally, we choose an appropriate coupling relationship between parameters K and T to obtain the Poincaré inequality of two point functions for the limiting system. Our method extends the classic Bakry-Émery criterion, and the results provide a new perspective to characterize the renormalization procedure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信