{"title":"Growth process-driven modulation of electrical characteristics in MBE-grown few-layer MoTe2","authors":"Kamlesh Bhatt, Santanu Kandar, Ashok Kapoor, Rajendra Singh","doi":"10.1007/s10854-025-14546-z","DOIUrl":null,"url":null,"abstract":"<div><p>2D TMDC materials are potential materials for future energy-efficient electronic and optoelectronic devices due to their clean, dangling-bond-free interface and interesting material properties. Controlling carrier statistics and the electrical properties is a crucial aspect for their wide application in ultrathin semiconductor-based devices; however, such tuning mostly requires extrinsic doping and bias operations. Here, we present our study on controlling the electrical properties of few-layer MoTe<sub>2</sub> films grown over a large area on sapphire using molecular beam epitaxy. The MBE growth parameters, such as growth temperature and chalcogen-to-metal flux ratio, have been optimized to control the stoichiometry of few-layer MoTe<sub>2</sub> films precisely. These stoichiometric changes, in turn, influence the electrical properties of the grown films. Raman spectroscopy and AFM were utilized to confirm the phase purity and uniformity of these films. The detailed XPS investigations show the effect of chalcogen deficiency (i.e., the presence of Te vacancies) and excess tellurium atoms on the semiconducting nature of the grown films. The significant shift in the fermi level towards the valence band confirms that the film becomes more p-type due to the presence of extra Te atoms in the lattice. Similarly, the presence of Te vacancies is found to shift the fermi level in the other direction. Our work provides a convenient approach for controlling MoTe<sub>2</sub>'s electrical characteristics uniformly without introducing any foreign impurity. This effective control over the electrical nature of the grown films by modulating the growth parameters can be advantageous for utilizing the ambipolar nature (i.e., both n and p type nature) of 2D MoTe<sub>2</sub> for applications requiring transitions between electron and hole conduction.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14546-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
2D TMDC materials are potential materials for future energy-efficient electronic and optoelectronic devices due to their clean, dangling-bond-free interface and interesting material properties. Controlling carrier statistics and the electrical properties is a crucial aspect for their wide application in ultrathin semiconductor-based devices; however, such tuning mostly requires extrinsic doping and bias operations. Here, we present our study on controlling the electrical properties of few-layer MoTe2 films grown over a large area on sapphire using molecular beam epitaxy. The MBE growth parameters, such as growth temperature and chalcogen-to-metal flux ratio, have been optimized to control the stoichiometry of few-layer MoTe2 films precisely. These stoichiometric changes, in turn, influence the electrical properties of the grown films. Raman spectroscopy and AFM were utilized to confirm the phase purity and uniformity of these films. The detailed XPS investigations show the effect of chalcogen deficiency (i.e., the presence of Te vacancies) and excess tellurium atoms on the semiconducting nature of the grown films. The significant shift in the fermi level towards the valence band confirms that the film becomes more p-type due to the presence of extra Te atoms in the lattice. Similarly, the presence of Te vacancies is found to shift the fermi level in the other direction. Our work provides a convenient approach for controlling MoTe2's electrical characteristics uniformly without introducing any foreign impurity. This effective control over the electrical nature of the grown films by modulating the growth parameters can be advantageous for utilizing the ambipolar nature (i.e., both n and p type nature) of 2D MoTe2 for applications requiring transitions between electron and hole conduction.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.