Juliana Gonella Fornielles da Silva, Igor Henrique Cerqueira, José Alberto Paris Junior, Lucas Henrique Domingos da Silva, Vitória Maria Medalha Colturato, Paula de Abreu Fernandes, Thaís Lourenço Oliveira, Alessandra Cristina Dametto, Diógenes dos Santos Dias, Clovis Augusto Ribeiro, Luiz Fernando Cappa de Oliveira, Hernane da Silva Barud, Flávia Aparecida Resende
{"title":"Production of biopolymers from watermelon mesocarp: structural characterization, cytogenotoxicological safety, and antioxidant activity","authors":"Juliana Gonella Fornielles da Silva, Igor Henrique Cerqueira, José Alberto Paris Junior, Lucas Henrique Domingos da Silva, Vitória Maria Medalha Colturato, Paula de Abreu Fernandes, Thaís Lourenço Oliveira, Alessandra Cristina Dametto, Diógenes dos Santos Dias, Clovis Augusto Ribeiro, Luiz Fernando Cappa de Oliveira, Hernane da Silva Barud, Flávia Aparecida Resende","doi":"10.1007/s13197-024-06076-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to produce flexible and optically semi-transparent biopolymers exclusively from watermelon mesocarp. Washed (WM-W) and non-washed (WM-NW) films were obtained hydrothermally, followed by grinding and casting steps, and characterized, targeting correlations among chemical structure, film-forming protocol, cytogenotoxicological safety, and antioxidant activity. The morphological aspects were analyzed using scanning electron microscopy and, according to thermogravimetry measurements, the films are thermally stable with glass transition temperatures determined with differential scanning calorimetry ranging from 12.1 to 77.6 °C for WM-NW and 56.0 °C for WM-W. These differences are probably due to the presence of soluble carbohydrates. The elastic modulus and tensile strength ranged from 88 MPa to 1.1 GPa and from 0.4 MPa to 3.4 MPa, respectively, while the elongation at break decreased from 0.7 to 0.46%. The chemical groups were identified using FTIR and FT-Raman spectroscopy while the crystallinity index (from 10.4 to 50%) was determined with X-ray diffraction. Additionally, the relative water absorption, swelling ratio, water barrier properties, and fluid handling capacity were assessed. WM-NW showed slightly higher cytotoxicity than the WM-W film in cultures of human keratinocytes (HaCat cells). Furthermore, both exhibited antioxidant potential and lacked mutagenic effects, supporting their safe use in diverse value-added applications, particularly in medical devices.</p></div>","PeriodicalId":632,"journal":{"name":"Journal of Food Science and Technology","volume":"62 5","pages":"885 - 896"},"PeriodicalIF":2.7010,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s13197-024-06076-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to produce flexible and optically semi-transparent biopolymers exclusively from watermelon mesocarp. Washed (WM-W) and non-washed (WM-NW) films were obtained hydrothermally, followed by grinding and casting steps, and characterized, targeting correlations among chemical structure, film-forming protocol, cytogenotoxicological safety, and antioxidant activity. The morphological aspects were analyzed using scanning electron microscopy and, according to thermogravimetry measurements, the films are thermally stable with glass transition temperatures determined with differential scanning calorimetry ranging from 12.1 to 77.6 °C for WM-NW and 56.0 °C for WM-W. These differences are probably due to the presence of soluble carbohydrates. The elastic modulus and tensile strength ranged from 88 MPa to 1.1 GPa and from 0.4 MPa to 3.4 MPa, respectively, while the elongation at break decreased from 0.7 to 0.46%. The chemical groups were identified using FTIR and FT-Raman spectroscopy while the crystallinity index (from 10.4 to 50%) was determined with X-ray diffraction. Additionally, the relative water absorption, swelling ratio, water barrier properties, and fluid handling capacity were assessed. WM-NW showed slightly higher cytotoxicity than the WM-W film in cultures of human keratinocytes (HaCat cells). Furthermore, both exhibited antioxidant potential and lacked mutagenic effects, supporting their safe use in diverse value-added applications, particularly in medical devices.
期刊介绍:
The Journal of Food Science and Technology (JFST) is the official publication of the Association of Food Scientists and Technologists of India (AFSTI). This monthly publishes peer-reviewed research papers and reviews in all branches of science, technology, packaging and engineering of foods and food products. Special emphasis is given to fundamental and applied research findings that have potential for enhancing product quality, extend shelf life of fresh and processed food products and improve process efficiency. Critical reviews on new perspectives in food handling and processing, innovative and emerging technologies and trends and future research in food products and food industry byproducts are also welcome. The journal also publishes book reviews relevant to all aspects of food science, technology and engineering.