Controlled co-precipitation synthesis of Gd and Mn doped zinc tungstate: insights into structural, optical, magnetic behavior, and dielectric properties

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sadegh Azadmehr, Sanaz Alamdari, Majid Jafar Tafreshi, Zaighum Tanveer, Omid Mirzaee, Aliasghar Najafzadehkhoee, Jose J. Velázquez
{"title":"Controlled co-precipitation synthesis of Gd and Mn doped zinc tungstate: insights into structural, optical, magnetic behavior, and dielectric properties","authors":"Sadegh Azadmehr,&nbsp;Sanaz Alamdari,&nbsp;Majid Jafar Tafreshi,&nbsp;Zaighum Tanveer,&nbsp;Omid Mirzaee,&nbsp;Aliasghar Najafzadehkhoee,&nbsp;Jose J. Velázquez","doi":"10.1007/s00339-025-08399-w","DOIUrl":null,"url":null,"abstract":"<div><p>Gadolinium and manganese-doped zinc tungstate (ZnWO₄: Gd &amp; ZnWO₄: Mn (1 at%)) nanocrystals were successfully prepared using a simple co-precipitation method. The structural, morphological, and chemical properties of the materials were thoroughly investigated using X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), and energy dispersive X-ray (EDX) analysis. The crystallite sizes of the Gd-doped and Mn-doped samples were 46 nm and 59 nm, respectively. XRD analysis confirmed that both samples exhibited a single monoclinic phase crystal structure. The Gd-doping resulted in a more uniform particle size distribution and smoother surface morphology, which could enhance the optical and magnetic properties of the material. In contrast, Mn-doping led to the formation of more agglomerated particles with a rougher texture, potentially affecting the specific surface area and its interaction with external fields. SEM/TEM images also revealed an increase in average particle size with the Mn dopant. Optical properties, as measured by diffuse reflectance spectroscopy (DRS), showed a band gap of 3.79 eV for ZnWO₄: Gd and 3.40 eV for ZnWO₄: Mn. Magnetic measurements indicated enhanced magnetic properties for ZnWO₄: Mn compared to both pure ZnWO₄ and ZnWO₄: Gd. The dielectric properties, including the dielectric constant (εr), dielectric loss (tan δ), and AC conductivity, were studied over a frequency range from 100 Hz to 3 MHz at room temperature. The reduced coercivity observed in the Mn-doped sample suggests improved performance for potential applications in transformers, windings, and magnetic storage devices, where reduced core loss and enhanced efficiency are key requirements.This study not only enhances the understanding of the influence of Gd and Mn doping on ZnWO₄ properties but also opens up new possibilities for the development of multifunctional materials for advanced technological applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08399-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gadolinium and manganese-doped zinc tungstate (ZnWO₄: Gd & ZnWO₄: Mn (1 at%)) nanocrystals were successfully prepared using a simple co-precipitation method. The structural, morphological, and chemical properties of the materials were thoroughly investigated using X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), and energy dispersive X-ray (EDX) analysis. The crystallite sizes of the Gd-doped and Mn-doped samples were 46 nm and 59 nm, respectively. XRD analysis confirmed that both samples exhibited a single monoclinic phase crystal structure. The Gd-doping resulted in a more uniform particle size distribution and smoother surface morphology, which could enhance the optical and magnetic properties of the material. In contrast, Mn-doping led to the formation of more agglomerated particles with a rougher texture, potentially affecting the specific surface area and its interaction with external fields. SEM/TEM images also revealed an increase in average particle size with the Mn dopant. Optical properties, as measured by diffuse reflectance spectroscopy (DRS), showed a band gap of 3.79 eV for ZnWO₄: Gd and 3.40 eV for ZnWO₄: Mn. Magnetic measurements indicated enhanced magnetic properties for ZnWO₄: Mn compared to both pure ZnWO₄ and ZnWO₄: Gd. The dielectric properties, including the dielectric constant (εr), dielectric loss (tan δ), and AC conductivity, were studied over a frequency range from 100 Hz to 3 MHz at room temperature. The reduced coercivity observed in the Mn-doped sample suggests improved performance for potential applications in transformers, windings, and magnetic storage devices, where reduced core loss and enhanced efficiency are key requirements.This study not only enhances the understanding of the influence of Gd and Mn doping on ZnWO₄ properties but also opens up new possibilities for the development of multifunctional materials for advanced technological applications.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信