{"title":"The current use of nanotechnology in the fight against antimicrobial resistance: promising approaches to global health challenge","authors":"Gideon Sadikiel Mmbando, Ombeni Ally, Shedrack Reuben Kitimu","doi":"10.1007/s11051-025-06290-6","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial resistance (AMR) is a worldwide health emergency that requires creative solutions beyond the use of traditional antibiotics. Nanotechnology is a viable substitute that offers fresh methods to fight resilient microbial strains. Unfortunately, there is currently a lack of information available regarding the use of nanotechnology to lessen the AMR challenge worldwide. This review examined the present application of nanotechnology to combat AMR. Different nanomaterials, such as metallic, polymeric, and lipid-based nanoparticles, are highlighted, along with their mechanisms of action, which include rupturing microbial membranes and producing reactive oxygen species. The review also looks at how nanotechnology is used in medical device coatings, drug delivery systems, and improving the effectiveness of current antibiotics. Notwithstanding its potential, issues like environmental effects, regulatory barriers, and safety concerns need to be addressed. Future directions should focus on the need for international collaboration as well as the application of nanotechnology into various antimicrobial tactics like bacteriophage and antimicrobial peptides. This review highlights the significant role that nanotechnology can play in combating AMR.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06290-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) is a worldwide health emergency that requires creative solutions beyond the use of traditional antibiotics. Nanotechnology is a viable substitute that offers fresh methods to fight resilient microbial strains. Unfortunately, there is currently a lack of information available regarding the use of nanotechnology to lessen the AMR challenge worldwide. This review examined the present application of nanotechnology to combat AMR. Different nanomaterials, such as metallic, polymeric, and lipid-based nanoparticles, are highlighted, along with their mechanisms of action, which include rupturing microbial membranes and producing reactive oxygen species. The review also looks at how nanotechnology is used in medical device coatings, drug delivery systems, and improving the effectiveness of current antibiotics. Notwithstanding its potential, issues like environmental effects, regulatory barriers, and safety concerns need to be addressed. Future directions should focus on the need for international collaboration as well as the application of nanotechnology into various antimicrobial tactics like bacteriophage and antimicrobial peptides. This review highlights the significant role that nanotechnology can play in combating AMR.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.