Classification of cracking potential for clayey soils based on cyclic wet-dry tests

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Hui-Cong Yu, Ling Zeng, Xin-Yang Wu, Qian-Feng Gao, Han-Bing Bian, Jin-Tao Luo, Jing-Cheng Chen, Hong-Ri Zhang
{"title":"Classification of cracking potential for clayey soils based on cyclic wet-dry tests","authors":"Hui-Cong Yu,&nbsp;Ling Zeng,&nbsp;Xin-Yang Wu,&nbsp;Qian-Feng Gao,&nbsp;Han-Bing Bian,&nbsp;Jin-Tao Luo,&nbsp;Jing-Cheng Chen,&nbsp;Hong-Ri Zhang","doi":"10.1007/s12665-025-12210-7","DOIUrl":null,"url":null,"abstract":"<div><p>The substantial development of desiccation cracks profoundly impacts the mechanical and hydraulic properties of clayey soils, potentially leading to various engineering challenges such as slope failures. Therefore, identifying the soil’s cracking potential is crucial for guiding engineering design and construction processes. The aim of this study was to propose a method for cracking potential classification for clayey soils. To this end, standard cyclic wet-dry tests, capable of maximizing the soil’s cracking potential, were proposed based on an analysis of the cracking behavior of lateritic soils under different wet-dry conditions. Subsequently, the cracking characteristics of several typical clayey soils (i.e., lateritic soil, kaolinite, bentonite, and attapulgite) were examined by standard cyclic wet-dry tests. Finally, a novel method for cracking potential classification of clayey soils was proposed incorporating the entropy weighting method. The results show that the most significant degree of cracking in lateritic soil is observed under vacuum saturation and 60°C oven-drying, which is identified as the standard wet-dry condition. When the crack development stabilizes after multiple standard wet-dry cycles, the cracking potential of the soil is characterized by parameters such as the total crack length, maximum crack width, surface crack rate and the fractal dimension of the cracks. On this basis, a classification method is proposed to categorize the cracking potential of clayey soils into five levels: extremely weak, weak, medium, strong, and extremely strong. The cracking potential of different clayey soils was evaluated using this method, revealing that bentonite exhibited the highest cracking potential, classified as \"extremely strong\".</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12210-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The substantial development of desiccation cracks profoundly impacts the mechanical and hydraulic properties of clayey soils, potentially leading to various engineering challenges such as slope failures. Therefore, identifying the soil’s cracking potential is crucial for guiding engineering design and construction processes. The aim of this study was to propose a method for cracking potential classification for clayey soils. To this end, standard cyclic wet-dry tests, capable of maximizing the soil’s cracking potential, were proposed based on an analysis of the cracking behavior of lateritic soils under different wet-dry conditions. Subsequently, the cracking characteristics of several typical clayey soils (i.e., lateritic soil, kaolinite, bentonite, and attapulgite) were examined by standard cyclic wet-dry tests. Finally, a novel method for cracking potential classification of clayey soils was proposed incorporating the entropy weighting method. The results show that the most significant degree of cracking in lateritic soil is observed under vacuum saturation and 60°C oven-drying, which is identified as the standard wet-dry condition. When the crack development stabilizes after multiple standard wet-dry cycles, the cracking potential of the soil is characterized by parameters such as the total crack length, maximum crack width, surface crack rate and the fractal dimension of the cracks. On this basis, a classification method is proposed to categorize the cracking potential of clayey soils into five levels: extremely weak, weak, medium, strong, and extremely strong. The cracking potential of different clayey soils was evaluated using this method, revealing that bentonite exhibited the highest cracking potential, classified as "extremely strong".

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信