Jiaqi Han, Nianxin Zhu, Jiahao Sha, Jinyan Cai, Hui Cao, Tai Ye, Liling Hao, Fei Xu
{"title":"A highly selective electrochemical aptasensor for Pb2+ based on molecular imprinting technology and tetrahedral DNA nanostructure","authors":"Jiaqi Han, Nianxin Zhu, Jiahao Sha, Jinyan Cai, Hui Cao, Tai Ye, Liling Hao, Fei Xu","doi":"10.1007/s00604-025-07101-4","DOIUrl":null,"url":null,"abstract":"<div><p> A novel electrochemical biosensor for the detection of lead ions (Pb<sup>2+</sup>) with improved specificity and sensitivity was developed. The sensor design incorporated molecular imprinting technology, where chitosan was polymerized on the electrode surface to form a lead-specific cavity structure, thereby enhancing selectivity in complex sample matrices. Meanwhile, the tetrahedral DNA nanostructure was employed as the recognition probe to mitigate the entanglement issues commonly associated with single-stranded DNA, thus improving the sensitivity of the detection. The developed sensor exhibited a linear dynamic range from 0.050 to 2.000 μg/mL, with a limit of detection (LOD) of 0.0034 μg/mL. The aptasensor’s efficacy was verified through the analysis of aquatic samples, demonstrating a high degree of reliability comparable to that of inductively coupled plasma mass spectrometry (ICP-MS).</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07101-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel electrochemical biosensor for the detection of lead ions (Pb2+) with improved specificity and sensitivity was developed. The sensor design incorporated molecular imprinting technology, where chitosan was polymerized on the electrode surface to form a lead-specific cavity structure, thereby enhancing selectivity in complex sample matrices. Meanwhile, the tetrahedral DNA nanostructure was employed as the recognition probe to mitigate the entanglement issues commonly associated with single-stranded DNA, thus improving the sensitivity of the detection. The developed sensor exhibited a linear dynamic range from 0.050 to 2.000 μg/mL, with a limit of detection (LOD) of 0.0034 μg/mL. The aptasensor’s efficacy was verified through the analysis of aquatic samples, demonstrating a high degree of reliability comparable to that of inductively coupled plasma mass spectrometry (ICP-MS).
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.